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Summary

Supernova (SN) is a major feedback mechanism driving large-scale turbulence in the interstellar medium (ISM), which regulates star
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radiative phase in the Milky Way. There

the observed momentum and kinetic energy appear to be consistent with SN explosion energy of ~10°" erg, while the thermal energies of

several SNRs are significantly off from the theoretical evolution tracks.

Observed Parameters of HI Shells in Eight Radiative SNRs

Table 1. Parameters of Radiative HI Shells Associated with SNRs

G-name Name d Vo Ry, Vsh tsh My, (Hr) Psh EK sh Ref.
(kpc) (km s~ 1) (pc) (km s~ 1) (10* yr) (10 Mg) (10° Mg km s 1) (10°° erg)

G34.7-0.4 W44 2.8 47 12.5 135 2.7 0.39 0.74 1.0 1

G49.2—-0.7 W51C 6 62 6 96 1.8 > 1.2 > 1.6 > 1.5 2

G54.4—0.32 e 3.3 38 19.2 59 9.5 0.58 0.49 0.28 1

6.6 38 38.4 59 19 2.3 1.9 1.1 1

G69.0+2.7 CTB80 2 13 19 72 7.7 1.1 1.1 0.76 1
G89.0+4.7 HB 21 1.7 —12 27 61 13 2.2 1.9 1.2 this work

G189.1+43.0 IC 443 1.5 —5 7.1 100 2.1 0.49 0.69 0.69 3

G172.841.5 e 1.8 —20 61 33 5.9 4.5 2.5 4

G190.2+1.1 e 8 20 88 77 34 4.2 4.5 3.5 5
? The kinematic distance could be either 3.3 or 6.6 kpc using the flat rotation curve with Rg = 8.5 kpc and O = 220 km s™ ( see Park et al. 2013). Junkes
et al. (1992;-1) adopted the near distance (3.3 kpc) based on that ther star forming regions in this area at about the same d stance. On the other
hand, Ranasinghe & Leahy (2017) showed that there are HI ‘absorption f dt s in the bac kg und-s bt rac t >d spectra towards th SNR radio continuum
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Momentum Kinetic energy
W44 2.14x10°> M, km/s (HI: 0.74. H,: 1.4) 1.17x10°° erg (HI: 1.0, H,: 0.17)
IC 443 1.19x10°> M, km/s (HI: 0.69. H,: 0.5) 0.79%10°0 erg (HI: 0.69, H,: 0.1)
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W44 HI shell (Koo & Heiles 1995; Park+ 2013 )l

Figure 1. W44 (top) and IC 443 (bottom). Red=shocked atomic gas in Hi
21 cm emission (W44: Park et al.
Green=shocked molecular gas in HCO+ J=1-0 line (W44: Sashida et al.
2013, 1C443: Lee et al. 2012), Blue=shocked hot gas in X-ray (W44: Rho
IC 443: Asaoka & Aschenbach 1994), Contour=21 cm
continuum (W44: Giacani et al. 1997, IC 443: Lee et al. 2008). The white

et al. 1994,

scale bar in each image represents 10 pc.
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IC 443 HI shell (Lee et al. 2008)
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Momentum, K.E., and Th.E. of Radiative SNRs: Observer’s Plot
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Figure 2. Observed momentum, kinetic energy, and thermal energy
of SNRs with fast-expanding HI shells. The x-axis Is characteristics
age of HI shell t. =
component only, while the filled circles include the contribution

from

0.

shocked molecular

3R/v.. The empty circles represent HI

Also shown are theoretical

gas.

evolutionary tracks obtained from 1-D hydrodynamic simulations.

Momentum, K.E., and Th.E. of Radiative SNRs: Theoretician’'s Plot
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Figure 3. Observed properties
normalized by the quantities at the shell
formation (t = 4.4x10% Ec,%22n, 02> yr
and p=2.17x10° E¢,993n, 013 Mg km/s;
Kim & Ostriker 2015) and the explosion
energy (E<,=10°" erg). The simulated 1D
evolution tracks (blue and green

lines; same as Figure 2) are almost
congruent for the normalized properties.
The ambient medium density (n,) is
derived from observed mass (either HI
only or HI+H,) and shell size. The
vectors In each panel show the
directions for systematic uncertainties of
E.y @and n,. The evolution tracks from 3D
simulations of SNRs in an
Inhomogeneous, two-phase medium
(Kim & Ostriker 2015) with the mean
number density of 1 and 10 cm= are
shown as orange and purple color
families (10 realizations each),
respectively. The evolution tracks from
3D simulations of SNRs near the
interface of two uniform media with the
number density of 1 and 100 cm= (i.e,, a
cloud boundary; Cho et al. 2015) are
shown as a teal color family (8 different
explosion positions).
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