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Abstract

Today, large surveys detect thousands of supernovae a year, and our understanding of their
causes, mechanisms, and aftermath 1s very thorough. However, there are several other transients,
including Gamma-Ray Bursts (GRBs), Hypernovae (HNe), Super-Luminous Supernovae
(SLSNe), and Fast Radio Bursts (FRBs), where the causes and mechanisms are less certain or
even completely unknown. We explore the pulsar-powered supernova model as a method of
unifying the diverse transients, and are concerned with a signal unique to this model, such as
Pulsar Wind Nebula (PWN) emission. The smoking gun for this model should be late-time
non-thermal emission, detectable after the ejecta becomes optically thin. We predicted the
emission from several sources, and conducted follow-up observations in both radio (using VLA)
and submillimetre (using ALMA and NOEMA). We found a weak signal from PTF10hgi,
which was also detected at higher frequency by Eftekhari+ (2019), but no other detections, even
though several observations had sensitivities well below our predicted lower limits. A likely
explanation 1s that the assumed electron injection spectrum, which resembles that of the Crab, 1s
wrong. Changing the spectrum to inject more electrons at higher energies creates a low energy
spectral break which may explain the submillimetre non-detections. We calculate the time
evolution of such a model and find it 1s consistent with both ALMA non-detections and the

observed data for FRB 121102 and PTF10hgi.

Background and Methods

* The pulsar-driven supernova model, where the
spin-down energy of a rapidly-rotating pulsar

powers the emission of the supernova, can explain

the optical emission of transients like SLSNe
and GRBs

* In order to test this model, non-thermal
PWN emission needs to be observed, as any
energy source can explain the optical emission
- the energy gets thermalized in the optically

thick ejecta 1n the early phase
* X-ray and gamma ray studies have found

tentative candidates, but nothing too constraining
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Radio follow-up 1s another probe of PWN emission, but free-free absorption and synchrotron

self-absorption attenuate the signal for the first ~ decade after the explosion

Submillimetre signals are only attenuated for the first ~ year after the explosion
FRBs are also thought to have similar pulsar progenitors to SLSNe, and FRB 121102 was

localized to a similar host galaxy as most SLSNe (dwart, star-forming)

~ a few months after the explosion

The PWNe emission is absorbed

and thermalized in the supernova ejecta,
powering a superluminous supernova.

Radio/Submillimetre PWN Emission:

PWNe

SN Ejecta

~ 1 yr after the
explosion

The non-thermal PWNe emission in
the ALMA bands starts to escape the SN ejecta.

* We first fit the optical data of six recent SLSNe with the pulsar driven model to determine their
initial rotation period P, initial dipole magnetic field B, and ejecta mass Mej

* We then calculate broadband spectra for each SLSN and extract light curves at 1 GHz (VLA

band) and 100 GHz (ALMA band)

* Our model includes acceleration of the ejecta due to the pulsar wind, an electron injection
spectrum modeled from the Crab Nebula, pair production and cascades, scattering, free-free
absorption, synchrotron self-absorption, and various types of high energy absorption
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VLA Observations

* We observed 10 SLSNe with VLA at 3 GHz

* We got 9 non-detections (including no FRBs), and one marginal detection from PTF10hgi

* The PTF10hg1 detection 1s broadly consistent with our models, and some non-detections do
constrain pulsar parameters, but SN2005ap should have been detected
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ALMA/NOEMA Observations

* We observed SN2015bn and SN2016ard with ALMA 1n bands 3 (100 GHz) and 6 (230 GHz),
and observed SN2017egm with NOEMA in band 1 (100 GHz)

* We found a signal near SN2017egm, but it 1s coincident with a star-forming region in the
galaxy, not the supernova remnant

* We observed no signal from SN2015bn and SN2016ard

* These non-detections below our predicted lower limits suggest something 1s wrong with our
model 107
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Changing the Electron Injection Spectrum

* Changing the low energ
injection to be less
prominent results in a
spectral break in radio 1

* The spectrum transition
from fast-cooling to slo
cooling at t_ | |

vE,

* There are two extreme
cases for late time
evolution (u, or vy,
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