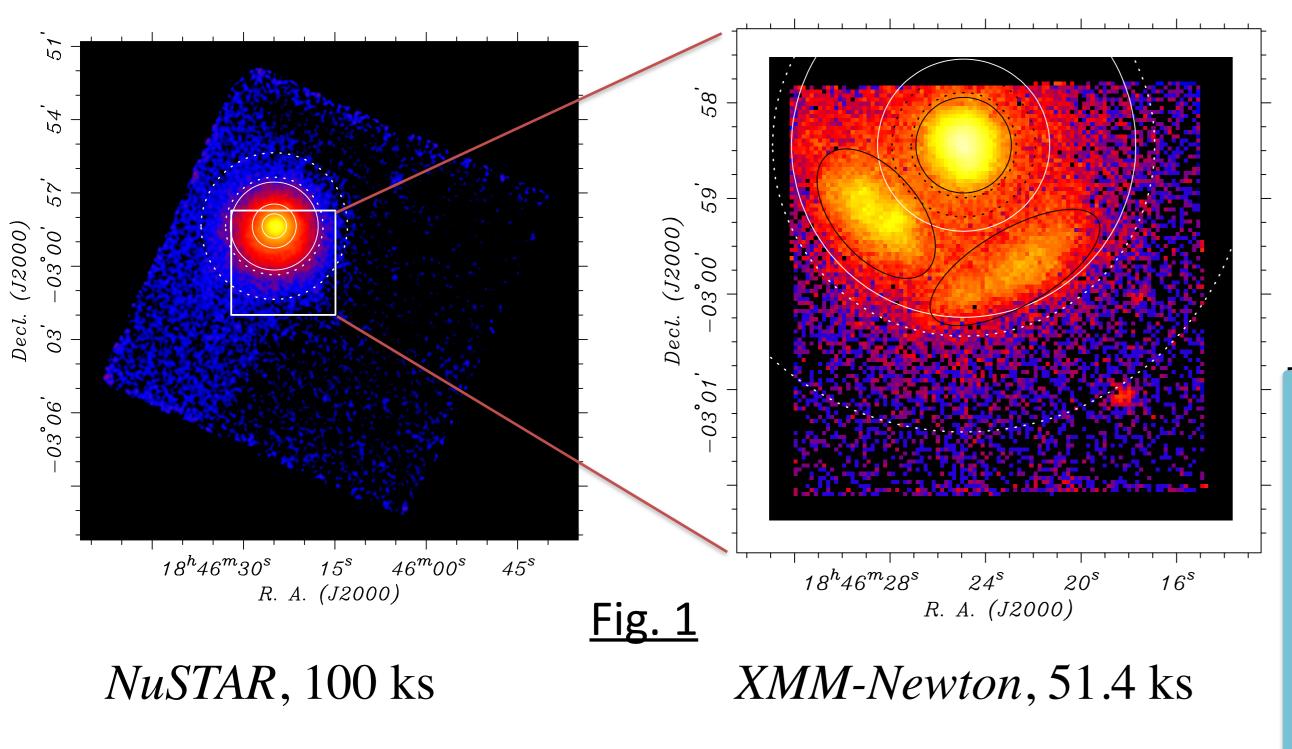


NSERC CRSNG

XMM-Newton and NuSTAR Observations of the SNR Kes 75 and its PWN

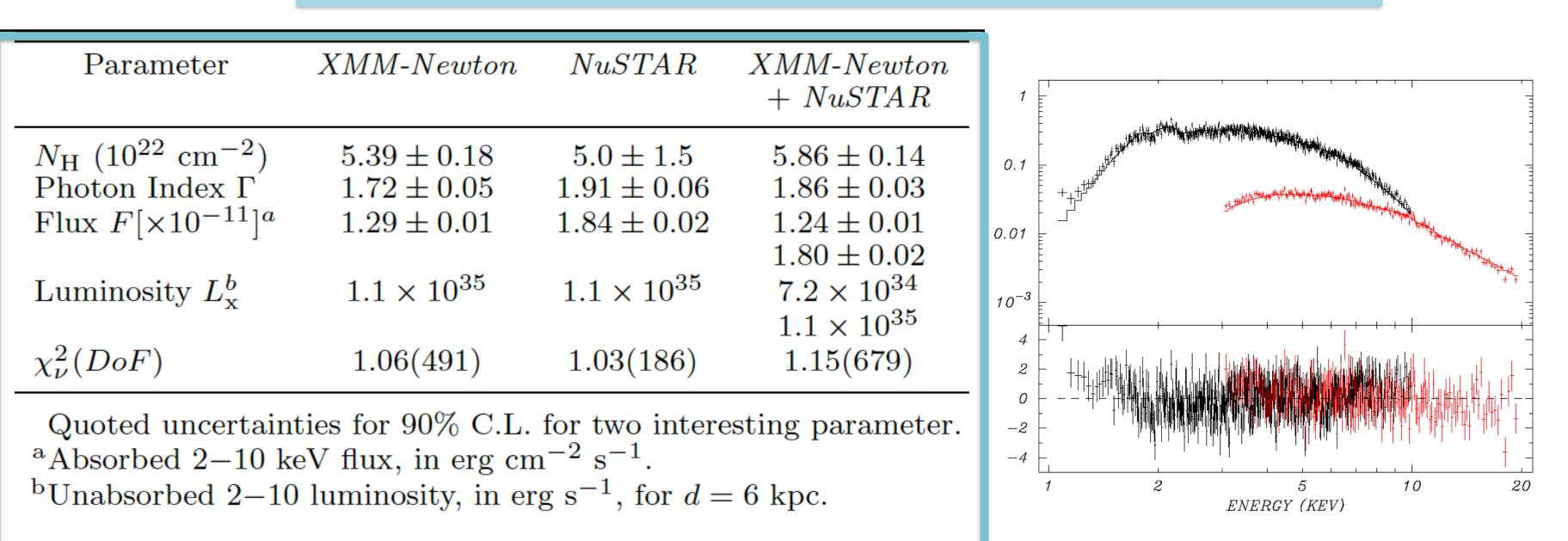
Samar Safi-Harb (U. of Manitoba), Eric V. Gotthelf (Columbia U.) Joseph D. Gelfand and Samayra M. Straal (NYU, Abu Dhabi)

The Kes75/PSR J1846-0258 System

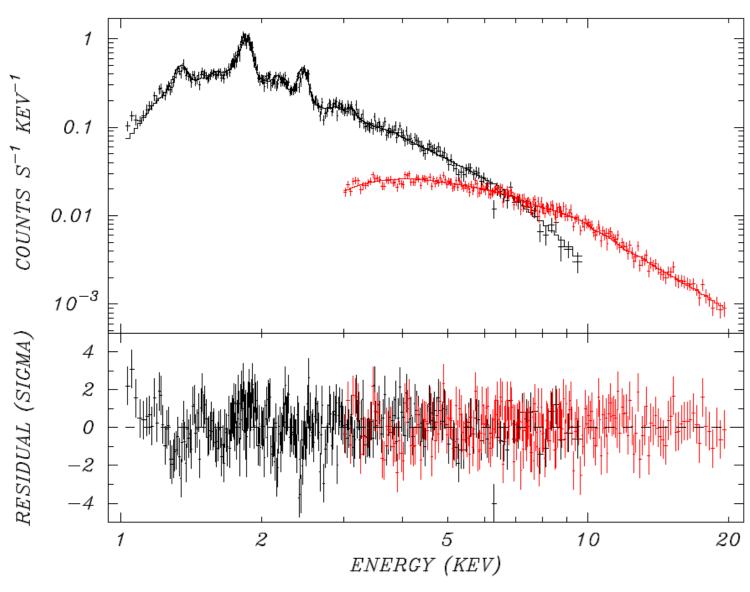

- The SNR Kes 75 is one of the youngest known SNRs in our Galaxy, powered by PSR J1846-0258.
- PSR J1846-0258 is a young, highly energetic, high-magnetic field (B), 325 ms X-ray pulsar (*Gotthelf+2000*):
 - Edot = 8.3E36 erg/s
 - P/2Pdot ~ 723 yr
 - ◎ B ~ 5E13 G
- The high B is likely responsible for the flare and burst activity seen in 2006, revealing the PSR's possible transition between a rotation-powered and a magnetar state (*Gavriil+2008; Kumar & Safi-Harb 2008*).

The PSR: Broadband Spectroscopy and Evolution

Reference	$N_{\rm H}$ (10 ²² cm ⁻²)	Г	Flux ^a [$\times 10^{-12}$]		
	(/		L J		
Chandra 2000 data set					
Helfand et al. 2003	3.96 (fixed)	1.39 ± 0.04	9.5		
Ng et al. 2008	4.0 (fixed)	1.1 ± 0.01	6.1 ± 0.03		
Gavriil et al. 2008		1.17(-0.12, 0.15)			
Kumar et al. 2008	3.96 (fixed)	1.32(-0.09, 0.08)	4.3 ± 0.2		
	Chandra 2006 d	lata set			
Ng et al. 2008	4.0 (fixed)	1.86 ± 0.02	37 ± 01.0		
Gavriil et al. 2008		1.89(-0.06, 0.04)			
Kumar et al. 2008	4.15(-0.12, 0.09)	1.89(-0.06, 0.04) 1.97(-0.07, 0.05)	27(-2,+1)		
	Chandra 2016	dataset			
This Work	3.96 (fixed)	1.10 ± 0.07	2.6 ± 0.1		
XMM	I-Newton & NuSTA	R 2017 data sets			
This Work	3.96 (fixed)	1.29 ± 0.08	3.28 ± 0.35		


• We present overlapping *XMM-Newton* and *NuSTAR* observations, acquired 2017.08.17-20, to address the nature of its broadband emission and the SN explosion properties.

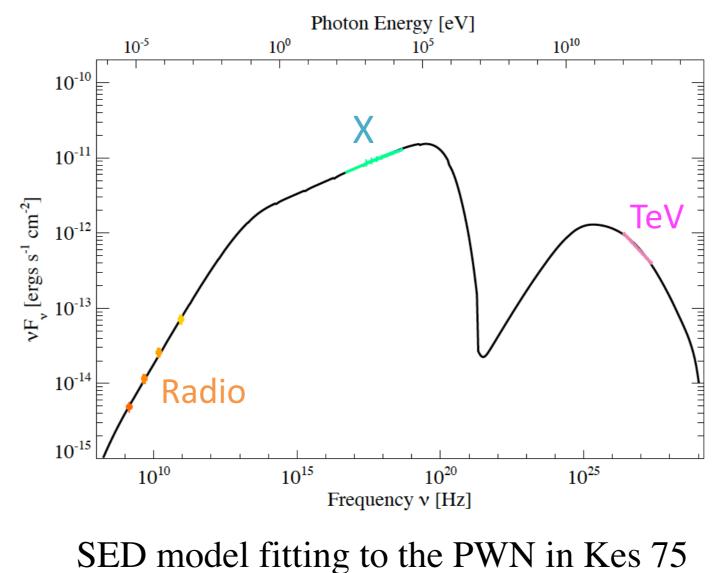
The New X-ray Observations


sorption model in all cases for comparison purpose. Quoted uncertainties for 90% C.L. for one interesting parameter. ^aUnabsorbed 2–10 keV flux, in erg cm⁻² s⁻¹.

The PWN: Broadband Spectroscopy

We also use archival *Chandra* data for joint spatially-ressolved spectroscopy.

The SNR: Global and Spatially Resolved Broadband Spectroscopy


Discovery of hard non-thermal X-rays

NEI (variable abundances)+**powerlaw** model; using the TBabs absorption model with the *wilm* Solar abundances (Wilms+2000) and the *vern* photoionization cross-section. The thermal model parameter values are notably different from those reported in earlier *Chandra* studies (e.g. *Temim*+12). This is attributed (partly) to the updated ISM model used here, and the difference in the extraction regions (Fig. 1).

	Southeast	Southwest	Sector^a
Region R.A. $(J2000)$	18:46:22.764	18:46:28.574	18:46:24.893
Region Decl. $(J2000)$	-02:59:43.33	-02:59:09.53	-02:58:28.31
Ellipse radii, P.A.	$1'0 \times 0'4, 300^{\circ}$	$0'.8 \times 0'.45, 40^{\circ}$	
Annulus radii			$0'.9 \times 1'.8$
$N_{\rm H} \ (10^{22} \ {\rm cm}^{-2})$	$4.11_{-0.10}^{+0.11}$	$4.27^{+0.23}_{-0.31}$	$4.14_{-0.09}^{+0.11}$
kT~(keV)	$1.01\substack{+0.17 \\ -0.10}$	$1.18\substack{+0.24 \\ -0.20}$	$0.87\substack{+0.05 \\ -0.06}$
$ au \; (10^{10} \; { m s} \; { m cm}^{-3})$	8.5	4.2	$10.0^{+2.2}_{-1.6}$
Mg	$0.89\substack{+0.09\\-0.11}$	$0.76\substack{+0.20 \\ -0.16}$	0.81 ± 0.08
Si	$1.26^{+0.15}_{-0.13}$	$1.21_{-0.28}^{+0.46}$	1.27 ± 0.09
\mathbf{S}	$0.98\substack{+0.17 \\ -0.14}$	$1.0^{+0.53}_{-0.27}$	1.15 ± 0.11
Photon Index Γ	$1.73\substack{+0.33 \\ -0.63}$	$2.02^{+0.37}_{-0.92}$	$2.02^{+0.04}_{-0.05}$
Flux $(10^{-11})^b$	4.7	2.9	8.8
$\chi^2_{\nu}(DoF)$	1.459(452)	1.369(363)	1.369(896)

PWN Modelling: SN explosion properties

The SN explosion and PSR birth properties are obtained by (1) fitting the SED of the PWN — using the radio, X-ray (current work) and TeV data (*H.E.S.S. collaboration 2018*) — and assuming a PWN expansion rate (*Reynolds*+18) inferred using *Chandra* data, and (2) with a model that accounts for its dynamical and radiative evolution (*Gelfand*+2009)

Kinetic Energy of SN ejecta = 1.02x10⁵⁰ ergs
Mass of SN ejecta = 0.43 Solar Masses
Density of surrounding ISM = 0.25 cm⁻³
Magnetization of pulsar wind = 0.0435
Braking Index p = 2.65
Spin-down Timescale = 405 years

See Figure 1 for the SNR clump regions. Quoted uncertainties for 90% C.L. for the parameter of interest.

^aJoint fit to XMM-Newton EPIC pn, Chandra and NuSTAR spectra, with independent normalizations.

^bUnabsorbed XMM-Newton EPIC pn flux measured in the 0.5–10 keV band in units of erg s⁻¹ cm⁻². The first two columns correspond to the clumps fits using the XMM-Newton and Chandra dataset.

We acknowledge the support of NSERC and NASA grant 80NSSC17K0636

Some Conclusions

- We presented new and archival X-ray observations of Kes 75 to study the broadband spectrum of the pulsar, PWN and SNR for the first time, and to address its SN explosion properties.
- We find the first evidence of hard, non-thermal, X-ray emission from the SNR (photon index~2).
- We find that the pulsar's spectrum (2017) is back to its 2000 (pre-2006-magnetar-burst) level.
- The 1-20 keV spectrum of the PWN is well-characterized by an absorbed power-law model with a photon index of 1.86 +/- 0.03.
- Our broadband and modelling study suggests that Kes 75 results from a low-energy (~1E50 ergs), low-mass (<1 solar mass) ejecta, SN explosion.