The Evolution of Dust in the Ejecta of Core Collapse Supernovae
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(1) There are basically two approaches for modeling the
formation of dust in the ejecta of CCSNe: CNT and
Molecular Kinetics.

Classical Nucleation Theory (CNT) Molecular Kinetics
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Addition of metals -

®

+ Presence of radioactive *Ni
“ Hard radiation, fast electrons, ions He+, Ne+, Ar+
that break down stable molecules, SiO, CO
+ Clumpy, stratified composition
+ Mixing between layers
+ Reverse shocks
+ Uncertain composition and final yields

(4) The discrepancy between theory and observations.

BIG discrepancy with observations
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(7) After day ~ 8,000 the ejecta is thin revealing its total

dust content: about 0.4 Msun of dust.
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(10) A simple model predicts that the mass of the
observable dust should increase as R2 or t2.

(2) Both predict the RAPID formation of dust in the
ejecta. Most of the dust , about 0.5 Msun, forms within
3 years of the explosion.

(Sarangi etal. 2015, Sluder etal. 2018)

About 50% of the dust formed within 3
years of the explosion
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(5) Observations of the ejecta and its kinematics show
that if the expansion is played BACKWARDS the ejecta
would be optically thick at infrared (IR) wavelengths.

Indebetouw et al. 2014 e
Ejecta is elliptical in shape

corresponding to constant
expansion velocities of
1350+150 km/s
and
7504250 km/s
along the
major an minor axes,
respectively

ALMA Band 9, 450,m
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Assume spherical
expansion
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(8) The spectra at early epochs can also be fit with ~0.4
Msun of dust, if the opacity of the ejecta is taken into
account.
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(11) Comparison with several young supernovae
confirms the trend.

Inferred dust mass from observed flux P
the intrinsic one

Observed flux is only a fraction of
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Relation between the intrinsic and
inferred (“observed™") dust mass
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3 e The escape probability
{Pm(T) == [1 -2 =i =5 )C 2’] ] from a dusty sphere
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The evolution in dust mass is an evolution in ejecta opacity
Duwek, Sarani, & Arene 2019)
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(3) Only 10-3 Msun of dust had been inferred from observations
of SN1987A on day ~1000. Later, on day ~10,000, the mass of
dust inferred from observations increased to about 0.5 Msun.
This trend has been suggested as evidence for the SLOW
formation on dust in the ejecta.
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(6) About 0.5 Msun of dust could have been
"hidden" in the ejecta at early times.
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(9) The evolution in dust mass is actually an
evolution of ejecta opacity. Dust formed rapidly, but
reveals itself slowly as the ejecta expands.

Evolution of ejecta opacity
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Alarge mass of dust can be
hidden in optically-thick
clumps at the early epochs of
evolution

(12) It has been argued that the gradual
evolution in line asymmetry is evidence for
the slow formation of dust in the ejecta.

Line emitting ~ Dust shell

Dust formation
preferentially
extinguishes lines
from receeding
parcels o gas

This gives rise to an
in the line profile

The asymmetry
becomes more
pronounced as

more dust is formed

(13) However, these arguments and models do not take

the complex morphology of the ejecta into account

3D iso-surfaces of [Sil+[Fe] (top row) and
Har emission (bottom row) reveal a complex structure of the ejecta

(Larsson et al. 2016)
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“Dust ball” from Miyazaki's
animated movie “Spirited Away”

Summary

® Determining the dust mass in SN ejecta must take the
ejecta opacity into account

® The apparent slow evolution in dust mass is actually an
evolution in ejecta opacity

B Most of the dust in CCSNe forms rapidly, within 3
years after the explosion

W The presence of dust affects the cascade of high-energy
photons and UV-opt line emission from the ejecta

® Evolution of IR emission can be used to infer ejecta
dynamics

® Modeling the evolution of line asymmetries is difficult

because of the complex structure of the ejecta, and the
location of the newly-forming dust
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