

Is Supernova Remnant Cassiopeia A a PeVatron?

Xiao Zhang¹ and Siming Liu²

¹School of Astronomy & Space Science, Nanjing university, Nanjing 210023, China ²Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China

INTRODUCTION

Supernova remnants (SNRs) are thought to be the dominant sources of Galactic cosmic rays (CRs, mainly protons) below the "knee" energy of 3 PeV. However the lack of evidence for PeV particles in SNRs pose a challenge to this paradigm. Moreover, a cutoff at ~3.5 TeV in the gamma-ray spectrum of Cas A was detected by MAGIC [1], suggesting that if the TeV gammarays have a hadronic origin, Cas A can only accelerate particles to tens of TeV.

DISCUSSION

Model B

Zone 2: dominates GeV via p-p process, same low-energy cutoff for electrons and protons

In this work, we propose a two-zone emission model for regions associated with the forward (zone 1) and inward/reverse shocks (zone 2). Given the low density associated with the forward shocks, it dominates high-frequency radio emission, soft X-ray rim via the synchrotron process and TeV y-ray via the inverse Comptonization. The reverse shocks are associated with a high density zone. With a relatively softer particle distribution and a higher cut-off energy for electrons, it dominates low-frequency radio, hard X-ray via the synchrotron process and GeV γ-ray via the hadronic processes.

MODEL DESCRIPTION

Two emission zones:

Zone 1 (z1): the outer thin rim (the forward shocks) Zone 2 (z2): rest of the emission regions, in particular regions containing inward-moving shocks, see Fig 1.

Particles' distribution: power-law with a cutoff

 $N(p) = A \cdot p^{-\alpha} \exp[-(p/p_c)^{\beta}]$

 p_c : the cut-off momentum p : the momentum; β : cut-off shape parameter α : the index;

 Considering the radiative cooling effect $E_{bre} = 4 \ (B_{\rm SNR}/100 \ \mu {\rm G})^{-2} (t/340 \ {\rm yr})^{-1} \ {\rm TeV}$

Figure 3. Same as in Figure 2 but for **Model B**.

Model C

10

--- zone 2

Zone 2: dominates GeV via bremsstrahlung process, same low-energy cutoff for electrons and protons

- In z1, t is the SNR age; in z2, t is a free parameter
- Including four radiation processes:
 - > synchrotron (Syn)
 - > inverse Compton (IC)
 - > bremsstrahlung (Bre)
 - > proton-proton collision (p-p)

RESULTS

Model A

Zone 2: dominates GeV via p-p process, low-energy cutoff ($p_{lc,p} = 15$ GeV/c and $p_{lc,e} = 1 \text{ MeV/c}$)

zone	α	β _e	р _{с,е} (ТеV/с)	B _{SNR} (μG)	<i>W_e</i> (10 ⁴⁷ erg)	W _p (10 ⁴⁸ erg)	n _t (cm⁻³)
1	2.1	1 (2)	7.0 (10.0)	250	7.0	1.0	4
2	2.7	1	9.0	1000	0.4	180	10

Fig 1. (a) Image of Cas A. from NASA; (b) NuSTAR 15-40 keV. Green arrows and boxes show the inward-shock positions [2].

Figure 4. Same as in Figure 2 but for Model C.

Model D

Zone 2: similar to Model A but include cooling and $\beta_e = 2$

zone 2

zone	α	β_{e}	р _{с,е} (ТеV/с)	B _{SNR} (μG)	<i>W_e</i> (10 ⁴⁷ erg)	W _p (10 ⁴⁸ erg)	n _t (cm⁻³)
1	2.1	1 (2)	8.0 (10.0)	260 (280)	7.0	1.0	4
2	2.7	2	25.0	950	0.4	200	10

Figure 2. SED of SNR Cas A for Model A. The black solid line represents the total emission from zone 1 (solid) and 2 (dashed) with various components considered in this work: synchrotron (red), inverse Compton (green), bremsstrahlung (cyan) and p-p collision (blue). Also shown are the radio data (open circle) given in Vinyaikin (2014), infrared data from IRAC 3.6 µm (open square; De Looze et al. 2017), X-ray data from Suzaku (filled triangle; Maeda et al. 2009) and INTEGRAL-IBIS (filled circle; Wang & Li 2016), γ-ray data from Fermi-LAT and MAGIC (open diamond and filled square, respectively; Ahnen et al. 2017). The gray region represents the energy range 15–55 keV.

REFERENCES

[1] Ahnen, M. L., Ansoldi, S., Antonelli, L. A., et al. 2017, MNRAS, 472, 2956 [2] Sato, T., Katsuda, S., Morii, M., et al. 2018, ApJ, 853, 46 [3] Vinyaikin, E. N. 2014, ARep, 58, 626 [4] De Looze, I., Barlow, M. J., Swinyard, B. M., et al. 2017, MNRAS, 465, 3309 [5] Maeda, Y., Uchiyama, Y., Bamba, A., et al. 2009, PASJ, 61, 1217 [6] Wang, W., & Li, Z. 2016, ApJ, 825, 102

Figure 5. Same as in Figure 2 but for **Model D**. The age of the inward shocks is 5 (left) and 3 (right) years.

CONCLUSION

- Zone 1 (forward shock): high-frequency radio (Syn), infrared, soft X-rays (Syn), and TeV gamma-rays (IC)
- Zone 2 (reverse/inward shock): low-frequency radio (Syn), hard X-rays (Syn), and GeV gamma-rays (p-p)

There is no evidence for high-energy cutoffs in the proton distributions implying

that Cas A can still be a PeVatron! (also see Zhang_2019_ApJ_874_98)