Chandrasekhar Mass Deflagrations as a Model for Type Iax Supernovae

Florian Lach^{1,2}, Friedrich Röpke^{1,2}, Markus Kromer

¹Zentrum für Astronomie, Heidelberg University, ²Heidelberg Institute for Theoretical Studies

Heidelberg Institute for Theoretical Studies

Characteristics of Type lax Supernovae (Foley et al., 2013)

- Low Luminosity: $-14.2 \gtrsim M_V$, peak $\gtrsim -18.4$ mag
- Low Expansion Velocities: $2000 \leq |v| \leq 8000 \,\mathrm{km \, s^{-1}}$
- ► Ejected mass \leq 0.6 M_{\odot} → Bound Remnant
- ▶ Mass of ${}^{56}\mathrm{Ni} \sim 0.003 0.27\,\mathrm{M}_{\odot}$
- Strong Mixing in the Ejecta
- Possible Scenario: Failed Deflagration

Previous Modelling Efforts

> 3D Deflagrations in M_{Ch} WDs from multi-spot Ignition (Fink et al., 2014)
 → Can not account for full diversity of SNe Iax (Magee et al., 2017)
 > Simmering Phase Simulations (Zingale et al., 2011)
 → Off-Center Ignition in single spot

$ ho_{c}$	$r_{ m off}$	Z _o	⁵⁶ Ni	IGE	IME	0	С
2.6	150	1	0.0178	0.026	0.0034	0.0008	0.0007
2.6	60	1	0.0189	0.025	0.0039	0.010	0.009
2.6	10	1	0.069	0.094	0.013	0.028	0.025
1.0	10*	0.01	0.124	0.140	0.035	0.053	0.0.041

Nucleosynthetic yields for the ejected material in solar masses. *) Ignited in two bubbles.

- ► IGE and ⁵⁶Ni comparable and lower than in Fink et al. (2014)
- ► IME significantly lower compared to Fink et al. (2014)
- Mixed Ejecta: ¹²C , ¹⁶O prominent in outer regions and ⁵⁶Ni in central part
 Velocities within expected range: v_{max} $\leq 10000 \, \mathrm{km \, s^{-1}}$

Results - Nucleosynthesis

 \Rightarrow Detailed Investigation of the Parameter Space needed

Explosion Modelling & Setup

- Finite Volume Hydrocode LEAFS:
 - Levelset Approach for Flame Front
 - Moving Hybrid Grid to track Flame and WD
 - \triangleright Resolution: 528³
 - ▷ New: FFT gravity solver
- Adiabatic Temperature Profile with $T_c = 6 \times 10^8 \,\mathrm{K}$
- \blacktriangleright Single Spot off-center Ignition in $M_{\rm Ch}$ WD

Postprocessing:

Code YANN

384 Species Nuclear Network

Left: Initial ignition configuration. Ignition spark consists of four bubbles to provide an initial perturbation. **Right:** Volume rendered density and flame front at t = 1.35 s

► Models:

```
    ▷ Central Density: 1.0 < \rho_c < 2.6 \times 10^9 \, \mathrm{g \, cm^{-3}}
    ▷ Offset Radius: 10 < r_{\rm off} < 150 \, \mathrm{km}
```

 \triangleright Metallicity: 0.001 < Z < 2 Z_{\odot}

Results - Hydro

- Ejected Mass and ⁵⁶Ni mass at lower end of expected range
 comparable to N1def, N3def in (Fink et al., 2014)
- Large impact of varying ρ_c and r_{off}

 $-10_{-10} -5 -5 -5 -5 -10 -5 -5 -5 -10 -5 -5 -5 -10 -0.0$ Density and mass fractions of IGEs, IMEs and carbon as a function of asymptotic velocity.

Bound Remnant

- ► A lot of burned material inside the core
- Bound remnant receives recoil due to asymmetric explosion
- Large spread in kick velocities
 can the remnant leave the binary system?

Kick velocity of the bound remnant vs. ejected mass

► Work in Progress:

Evolve the bound remnant further and resolve its structure
 Calculate spectra and light curves

References

Fink, M., Kromer, M., Seitenzahl, I. R., Ciaraldi-Schoolmann, F., Röpke, F. K., Sim, S. A., Pakmor, R., Ruiter, A. J., & Hillebrandt, W. 2014, MNRAS, 438, 1762

Foley, R. J., Challis, P. J., Chornock, R., Ganeshalingam, M., Li, W., Marion, G. H., Morrell, N. I., Pignata, G., Stritzinger, M. D., Silverman, J. M., Wang, X., Anderson, J. P., Filippenko, A. V., Freedman, W. L., Hamuy, M., Jha, S. W., Kirshner, R. P., McCully, C., Persson, S. E., Phillips, M. M., Reichart, D. E., & Soderberg, A. M. 2013, ApJ, 767, 57

Magee, M. R., Kotak, R., Sim, S. A., Wright, D., Smartt, S. J., Berger, E., Chornock, R., Foley, R. J., Howell, D. A., Kaiser, N., Magnier, E. A., Wainscoat, R., & Waters, C. 2017, A&A, 601, A62

Zingale, M., Nonaka, A., Almgren, A. S., Bell, J. B., Malone, C. M., & Woosley, S. E. 2011, ApJ, 740, 8