

Progenitor Mass Distribution for Core Collapse Supernova Remnants

Mariangelly Díaz-Rodríguez¹, Jeremiah W. Murphy¹, Andrew E. Dolphin², Benjamin Williams³, Julianne J. Dalcanton³ ¹Florida State University; ²Raytheon; ³University of Washington

Age-dating nearby stellar populations: one way to constrain the progenitor masses of CCSN -

- Theory predicts that single stars above ~ 8 M_{\odot} collapses, but in general we don't know which ones actually explode?
- It is difficult to constrain these stars: only ~ 70 supernova (SN) progenitor have direct images
- By age-dating the surrounding stellar populations in the vicinity of the SN explosion we can infer the progenitor mass associated
- Age distribution for 94 SNRs in M31 and M33 galaxies. This image clearly shows a minimum age, maximum age, and slope of the distribution.

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

with that age

Supernova remnants (SNRs) as SN tracers, since **they are detectable for ~ 10⁴ yr.** Hence, we have the potential to find hundreds of progenitor masses

(Díaz-Rodríguez et al. 2018)

Our primary goal is to constrain which stars explode and constrain the predictions of core-collapse SN

Infer progenitor mass distribution from star formation histories (SFHs)

Goal: Calculate the progenitor mass distribution $(t_{\min}, t_{\max}, \beta)$ given the observed colormagnitude diagrams (CMD) for the regions surrounding the SNRs or SNe In Díaz-Rodríguez et al. 2018 we infer the progenitor mass distribution given a set of SFHs

How:

 We first derive the SFH from the colormagnitude diagram for each field using Match

- The next phase, is to connect the previous two steps into one so that we may infer the progenitor mass distribution given a set of CMDs (see Goal) (Díaz-Rodríguez et al. 2019 in prep)
 - Includes Monte Carlo test of this whole process

Tighter constraints for the minimum mass, maximum mass, and slope of the mass distribution

Bayesian inference for 94 SNRs in M31 and M33 (Díaz-Rodríguez et al. 2018)

- Single star evolution
 (Padova Models)
- Specific metallicity (solar)
- Specific parameters such as overshoot

- Compare distribution with CCSNe simulations
- Include binary effects
 on the model

