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To better understand supernova remnants it is vital to establish a 
good perception of their progenitor stars. Important insights can only 
be acquired through the systematic study of these populations in 
different host galaxies. However, luminous massive stars may remain 
undetected, as they could be embedded in thick circumstellar 
environments due to their strong and sometimes eruptive mass-loss. 
To address this we have used the largest optical (e.g. Pan-STARRS, 
OGLE) and IR (e.g. 2MASS, Spitzer) photometric datasets to compile 
the most complete samples of massive stars for a number of nearby 
galaxies (e.g. the Magellanic Clouds, M31, M33). By taking 
advantage of multiple machine-learning techniques (i.e. Support 
Vector Machines, Random Forests, Convolutional Neural Networks) 
we have developed an algorithm that classifies supergiant stars with 
a success ratio of ~90-94% for the Magellanic Clouds. By applying 
this to the available photometric datasets, we can uncover previously 
unclassified sources, which will become our prime candidates for 
spectroscopic follow-up aiming to confirm both their nature and our 
approach.

ABSTRACT

The sample of blue stars (Blue supergiants; BSG, O/B supergiants with 
emission lines; OBe, Wolf-Rayet; WR) is taken from Bonanos+2010, 
while Yellow supergiants (YSG) and Red supergiants (RSG) are retrieved 
from Neugent+2010 and Davies+2018, respectively. Optical (U,B,V,I from 
Massey+2002) and IR (J,H,Ks from 2MASS; 3.6μm, 4.5μm, 5.8μm, 
8.0μm, 24μm from Spitzer) is converted to flux (λ F
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removing band independency. For the model we actually use only a 
subset of bands (U,B,V,J,H,K,[3.6],[4.5]) which are normalized to the J 
band (see Fig. 1). Our targets need to have magnitudes in all bands, else 
they are removed from the training sample (see Table 1) We group into 5 
major classes: WR, BSG, OBe, YSG, RSG.  
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We split the sample we have built into training 
(1328 objects), and validation and test sets (166 
objects each). For the SMC, we used three different 
machine-learning methods. For the validation sets 
the accuracy we achieved is: 

82% for Support Vector Machines, 
86% for Random Forests, 
86% for Convolutional Neural Networks.

Combining the classification results from all three 
methods, i.e. taking the most frequent classification 
result (mode), we are able to achieve an accuracy 
of 94% on the test sample (used for testing the 
algorithm). 
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The source lists for M31 and M33 are not cleared from foreground sources. To 
account for these we use the astrometric information from GAIA DR2. To derive 
the necessary criteria to flag foreground sources we exclude all sources (e.g. 
~146000 initial sources in M31) that satisfy any of the selected criteria 
(pmra_error ≥ 3.0 mas, pmdec_error ≥ 3.0 mas, phot_g_mean_mag ≥ 20.5, 
parallax_error ≥ 1.5 mas, astrometric_excess_noise ≥ 1.0) and can be considered 
as low-quality objects (~7000 in M31), as well as those without any estimate on 
the proper motion in either R.A. or Dec (e.g. due to crowding; ~61000 in M31). 
From the remaining sources (~78000 in M31) we produce histograms of their 
proper motions in RA and DEC (over their corresponding errors) and 
parralax/error (see Fig. 3). The optimal fit is achieved by fitting a spline to known 
foreground sources (i.e. all stars outside the indicated ellipse) and a Gaussian fit. 
From the standard deviation of the later, we may derive the 3-sigma criteria, out of 
which we flag stars as potential foreground stars. 
Secure spectral classification for M31 and M33 is derived from Neugent +2019, 
Humphreys +2017, Massey  +2016, Gordon +2016, Drout +2009. The lists include 
initially 574 (M31; shown as blue dots in Fig. 3) and 636 (M33) objects with 
photomery in optical and IR bands. From these we identify and remove 20 and 55 
foreground stars, respectively.

Fig. 1: Example SEDs for different classes of objects. Fig. 2: Confusion matrices for the different methods used.

We obtain photometry from Pan-STARRS DR2 (g,r,i,z,y bands) and 
Spitzer mission (3.6μm, 4.5μm, 5.8μm, 8.0μm, 24μm). Following the 
previous approach we convert all magnitudes to fluxes and we normalize 
all data to 4.5μm band (in this case we use all available bands; see 
Table 3). Due to the smaller number of objects we need to combine both 
galaxies. We group into 4 major classes: Luminous Blue Variables 
(LBVs), BSG, YSG, and RSG. However, our model is biased in favor of 
BSGs that dominate the sample (by ~85%). Thus, the accuracy is lower 
to ~65% across all methods, fitting actually the BSGs. 
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Fig. 3: Distribution and fits 
for the proper motion in RA 
(upper panels). The spatial 
distribution of the 
foreground stars outside 
M31 and of the massive 
stars with know spectral 
types indicated as blue dots 
(lower panels)  
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In this work we present our recent results from the 
application of a machine-learning algorithm to 
classify massive stars based on their multi-
wavelength photometry. The datasets have been 
compiled by combining optical and IR surveys, and 
their corresponding magnitudes have been 
converted to fluxes before training. Taking into 
account the results from three different methods we 
are able to achieve an accuracy of more than 90% in 
the Magellanic Clouds. However, our preliminary 
results on M31 and M33 are not equally good. This is 
attributed to the (much) smaller sample of stars and 
the effect of the over-representation of BSG in this 
sample (that drives the training of the model). The 
algorithm will be used to identify new candidate 
massive stars for which we will perform follow-up 
spectroscopic observation to confirm their nature and 
our approach. 

CONCLUSIONS

Type
Initial 

sample
Final 

Sample

OBe 480 268

WR 10 6

BSG 1189 841

YSG 327 294

RSG 246 246

TOTAL 2252 1655

Table 1.

Similar to the SMC we build the LMC sample of 
classified blue, yellow, and red supergiants from 
Bonanos+2009, Neugent+2012, and Davies+2018, 
respectively. Following the SMC approach, we 
convert the magnitudes of the same selected bands 
(U,B,V,J,H,K,[3.6],[4.5]) and we train the algorithm to 
detect the same 5 classes: WR, BSG, OBe, YSG, 
RSG (see Table 2). Splitting further the remaining 905 
objects to training (724), validation (90), and test (91) 
sets, we get an accuracy of: 

80% for Support Vector Machines, 
82% for Random Forests, 
82% for Convolutional Neural Networks,

and combining the results from all methods we get an 
accuracy of 90% on the test sample.

THE LMC CASE

Type Initial 
sample

Final 
Sample

OBe 73 62

WR 91 72

BSG 370 266

YSG 213 203

RSG 306 302

TOTAL 1053 905

Table 2.

Table 3.

Type Initital
sample

Final
sample

BSG 774 483

YSG 54 29

RSG 141 48

LBV 7 4

TOTAL 1041 612
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