

Molecular Gas toward Supernova Remnant Cassiopeia A

Ping Zhou^{1,2}, J-T Li³, Z-Y Zhang^{4,5}, J. Vink^{1,6}, Y. Chen², M. Arias¹, D. Patnaude⁷, and J. N. Bregman³ 1. U. of Amsterdam, 2. Nanjing U., 3. U. of Michigan, 4. U. of Edinburgh, 5. ESO, 6. SRON, 7. SAO

Message 1. No evidence to support that Cas A is impacting the molecular clouds

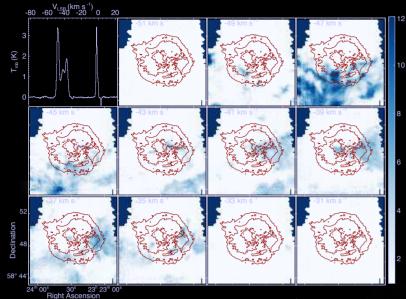


Fig. 1. Channel maps of the main-beam temperature of ¹²CO 2–1.The top left panel shows the spectrum averaged over the FOV. Contours: Chandra X-ray

Molecular gas is **cold**:

- temperature T<~ 22 K
- the ¹²CO 2-1/1-0 ratio is not specially enhanced in or at the boundary of the SNR
- Molecular gas is **not shocked**:
 - line width dV< 7 km/s</p>
 - CO line profiles are similar between the post-shock and background regions

Message 2. Molecular clouds are foreground

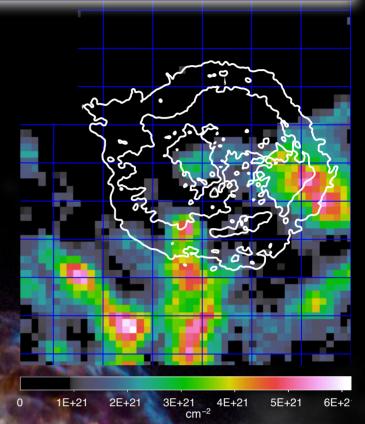
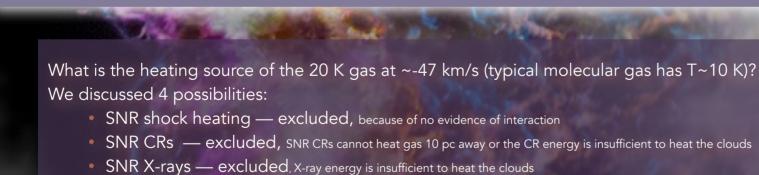
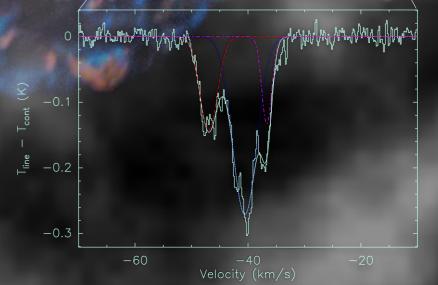



Fig. 2. Molecular column density N (H2) distribution

Observations using the IRAM 30m telescope ~9'x9' maps of 12CO 1-0, 2-1 and 13CO 1-0 HCO+ 1-0 at the western radio peak 11"/22" resolution

Message 3. The 20 K gas at V_{LSR} =-47 km/s is heated by background cosmic rays (CRs)


Background CRs — Yes, as long as the CR ionization rate $\zeta(H_2)$ reaches the typical value of ~2x10⁻¹⁶ s⁻¹. The gas at -47 km/s is warmer because it is more quiescent

 $T_{\rm k} \sim 20 [\frac{\zeta({\rm H_2})}{1.9 \times 10^{-16}~{\rm s}^{-1}}]^{0.42} (\frac{dv/dr}{\rm km~s^{-1}pc^{-1}})^{-0.42}~{\rm K}$

Background image: Cas A behind molecular clouds

> Grey: 12CO 2-1 (V_{LSR}=-55 to -30 km/s, IRAM 30m) Color: X-ray (source:NASA/CXC/SAO)

Please check our paper Zhou et al. 2018, ApJ, 865, 6 and references therein Fig .3. Absorption spectrum of HCO+ 1-0 near the radio peak, suggesting that all the molecular clouds are foreground

