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Supernovae as PeV cosmic rays sources? yd 10 SNe selected ™ _
y, > Core-collapse : 9 SNe are type IIP, \
#= No evidence is found that supernova remnants (SNRs) accelerate cosmic ray (CR) particles / SN 2016adj is type Ib 2

beyond the Knee (~3 x10' eV). If the supernova (SN) is the driving force, perhaps higher |
energy acceleration is occurring in the early stage of SNR evolution. | * Host galaxy with z < 0.01

« Observed by H.E.S.S. within 1yr since SN |
discovery

®= Theoretical studies predict that PeV particles shall be produced if the core collapse SN shock
propagates in a very dense circumstellar medium (CSM) as the growth of plasma instabilities
driven by the particle acceleration itself, leads to a fast magnetic field amplification. (e.g [1][2]

[31[4]).
= The type of SNe that exhibit these high-density stellar winds are type IIP, lIb and lIn SNe.
(e.g. [3].[6]).

= Dense CSM is also a requirement for sufficient number of pion production, and hence B
gamma-ray/neutrino emission.
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\\ SN 2016ad] triggered dedicated observations
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gamma emission

= We studied SNe observed by H.E.S.S to investigate whether there are bright gamma-ray
sources among them. As we see no emission for noone of the object we present upper limits
(UL) on their flux.
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Constraints on the mass loss rate

None of the 10 SNe have been detected in TeV gamma-rays. Probably because the CSM
densities were not be high enough for the 9 objects observed.

Using the model developed in [7], we can put limits on the mass loss rates, which
determines the circumstellar density. We found ULs values spanning from ~ 2.5 x 10-5 Moyr™

up to ~ 1.6 x 103 Moyr™', considering a wind velocity of 10 km.s™'. These values can be
compared to the estimate mass loss rate of SN 1993J of 3.5 105 Moyr™' [8].

Sketch for the gamma rays emission
at SN shock front with typical type llp values
(inspired by Smith &Chornock 2006)
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We could put our ULs on the flux in perspective of the mass loss rate of the progenitor before

tburst the dist to th Fig.3). '
outburst versus the distance to the source (see Fig.3) CO“CIUSlOn
-8 t/% | | NG ﬂf | % SN 1993J (t=200) = This non detection can be related to similar studies as SNe have not
S~ / S Sy, = = t=20days been observed in VHE gamma rays so far [9][10][11].
~ ()~3 ~ ==t = 150 days
9 ~ ~

= This result does not disprove that SNe accelerate cosmic rays, as the
CSM densities may be too low for detectable gamma-ray emission.

= Fig 3. shows that a type IIP SNe with a mass loss rate of 104 Moyr ™,

occuring at a distance of 10 Mpc, shall be detectable with H.E.S.S. 20
days after outburst. CTA could detect a type IIP SNe with a mass loss

rate of 104 Moyr™', occuring at 30 Mpc.

| = SNe within 10 Mpc occur regularly, and should be followed up with
gamma-ray observations. However SNe with dense CSM are more
rare.

= Cherenkov telescopes may observe gamma-ray emission from SNe in
the future. The observations shall be made within weeks after outburst :
i a trigger on observation seem to be the right strategy to adopt.
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Fig. 3 : Predicted Flux(>1TeV) represented as a function of the distance to the source. We use eq. 9 in [7] with Vsh = 10 000 kms~1, m = 0.85.
Mass loss rates are in unit Mer_1, with u,, = 10 kms™ " .Different values for the period of observation are considered : t = 20 days (full lines) and t

= 150 days (dotted lines) after SNe explosion. Our 2 sigma ULs on the flux are represented as well.
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