Asymmetric Type-Ia supernova origin of W49B

Ping Zhou (周平) & Jacco Vink

Type-la (Seitenzahl et al. 2013b)

N1600

How do we type a middle-aged supernova remnant?

	Normal core-collapse	Type-la	W49B
Pulsar wind nebula	Maybe	No	no
Neutron star	Yes	No	?
Ejecta	Intermediate-element rich	Iron-group rich	Iron-group rich
Other direct method?			

Wind bubble and asymmetries cannot be taken as direct methods, as both Type-Ia and core-collapse (CC) SNRs may be inside wind bubbles and both can have asymmetrical morphology

The metal abundances/masses in W49B support a Type-Ia origin

Fig. 2. Abundance ratios compared with the predictions of SN nucleosynthesis models

	Fe-group yields	$M_{Cr}(M_{sun})$	$M_{Mn}(M_{sun})$	$M_{Fe}(M_{sun})$
	W49B (observed value in the hot gas phase)	~5E-03	~7E-03	~0.32
	normal SN from a 25M _{sun} star	6.4E-04	3.2E-04	0.048
	10^{52} erg SN from a $25M_{sun}$ star	1E-03	3.5E-04	~0.1

Conclusion:

- 1. Metal abundance ratios are consistent with a Type-Ia SN model (see Fig. 2)
- 2. Metal masses of Fe-group elements (especially Mn) cannot be produced by a CCSN (see the table above)
- 3. W49B results from a near-Chandrasekhar mass white dwarf <— The large amount of Mn and high Mn/Fe ratio indicate a large central density of the white dwarf (massive white dwarf)
- 4. Normal explosion energy of $\sim 10^{51}$ erg, an age of 5—6 kyr
- 5. Fe abundance is highly enhanced in the east (see Fig.3) —> the type-Ia SN explosion could be highly asymmetrical
- 6. The bar-like X-ray morphology is mainly due to a density enhancement in the center (see Fig.3.)

Most detailed parameter distributions from spatially resolved X-ray spectroscopy

• Gradient of temperature (kT) and

- recombination timescale (Tau)
- Asymmetric Fe distribution
- Density enhanced along the E-W bar

Please check our paper and references therein: Zhou & Vink 2018, A&A, 615, A150

Data: Chandra X-ray data, 272 ks Method: adaptively binning,177 bins,~6000 counts/bin Plasma model: apec + vrnei (collisional

ionization equilibrium plasma + recombining plasma)

Fig. 3. parameter distribution