

Structures of M33 Supernova Remnants Revealed by Broad-Band HST Images

Po-Sheng Ou (歐柏昇)^{1,2}, You-Hua Chu (朱有花)^{1,2,3}, Chris Lin (林鼎鈞)

¹Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, R.O.C.

²Department of Physics, National Taiwan University, Taipei 10617, Taiwan, R.O.C.

Supernova Remnants (SNRs) are usually detected in narrow bands centered on emission lines. We show that broad-band images can still reveal some SNRs.

Catalog of 218 SNR candidates in M33 Long et al. (2010); Lee & Lee (2014)

HST archival data From the Legacy Imaging Survey of M33 (PI: Dalcanton) Only broad-band images!

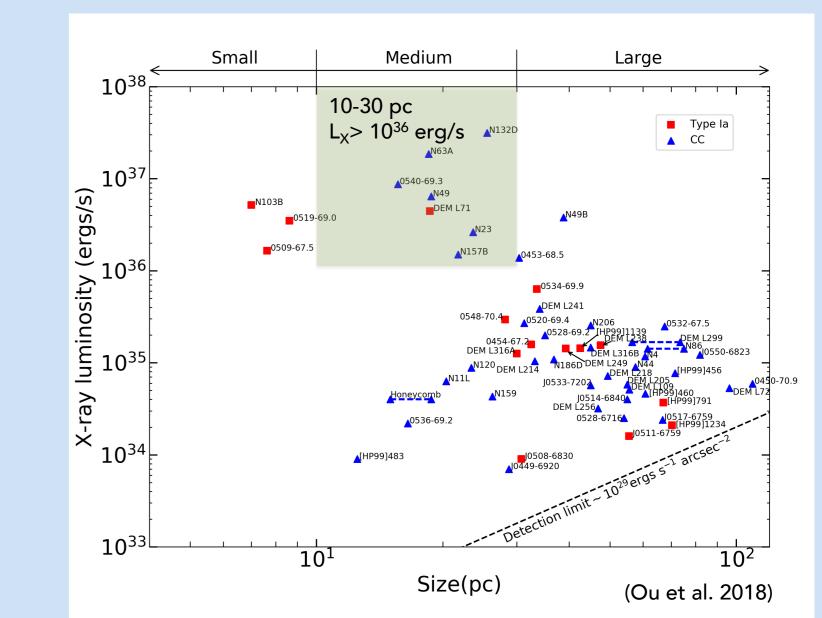
80 SNRs imaged 6 SNRs detected

in HST broad bands

	Surface Brightness (erg/s/cm²/arcsec²) Long et al. (2010)	Diameter (pc) Long et al. (2018)	Density (cm ⁻³)	X-ray Luminosity (erg/s) Garofali et al. (2017)
L10-036	5.0×10 ⁻¹⁵	22	>11	4.1×10 ³⁶
L10-039	1.5×10 ⁻¹⁴	16	>22	6.4×10 ³⁶
L10-045	5.8×10 ⁻¹⁵	33	>10	1.8×10 ³⁶
L10-071	5.0×10 ⁻¹⁵	24	>10	5.4×10 ³⁶
L10-096	3.7×10 ⁻¹⁵	22	>9	3.0×10 ³⁶
L10-124	9.4×10 ⁻¹⁵	14	>19	1.1×10 ³⁵

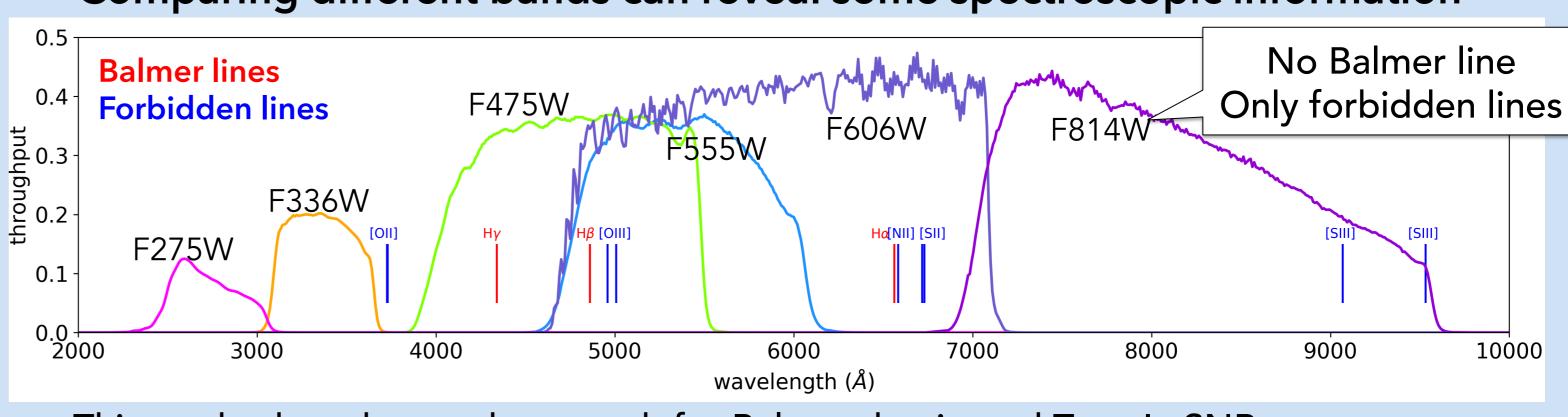
- Density calculated by: $SB = 1.9 \times 10^{-18} \, n_e^2 L_{pc} \, erg \, s^{-1} \, cm^{-2} \, arcsec^{-2}$ (Emitting path length L_{pc} = f*diameter of the SNR, where f<1)
- X-ray luminosity derived from the flux, for a M33 distance of 817 kpc

They are X-ray bright SNRs in dense environments

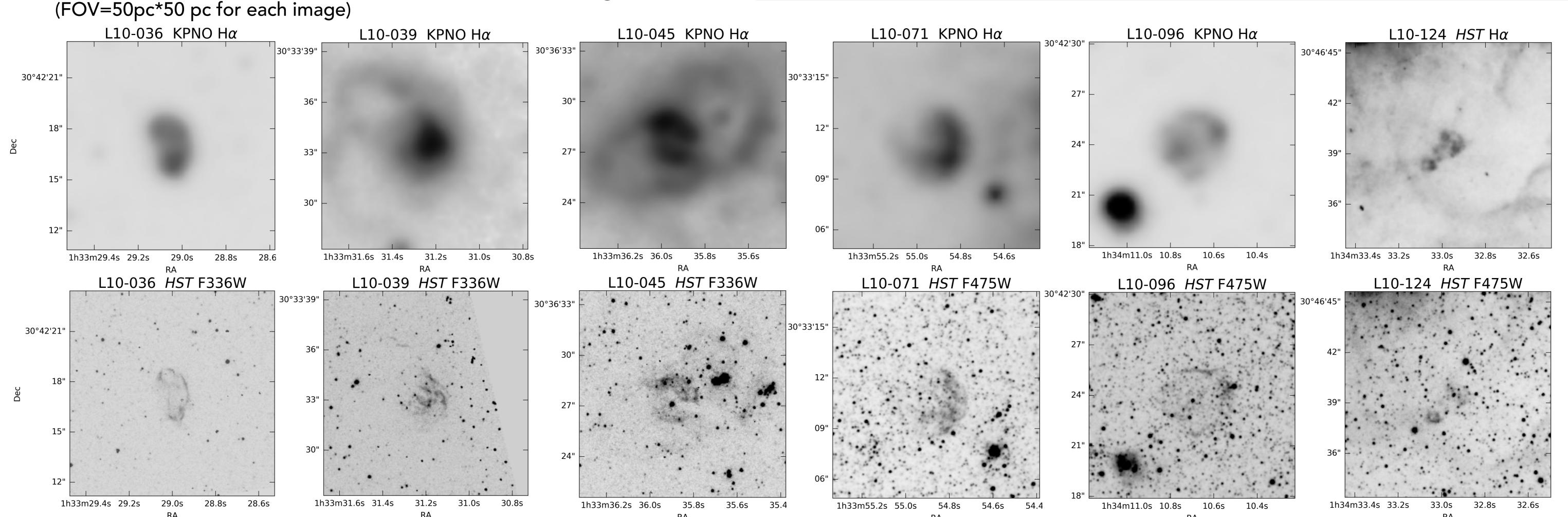

- The 6 SNRs detected in broad bands are exactly the 6 SNRs with highest densities derived from Long et al.'s measurements.
- All but 1 of these SNRs are among the 16 X-ray bright SNRs with $L_x > 10^{36}$ erg/s.

1h34m40s

Density detection threshold


- X-ray: >0.001 cm⁻³ (Ou et al. 2018)
- $H\alpha$ band: >1 cm⁻³ (Ou et al. 2018)
- HST broad bands: >10 cm⁻³

Comparing with the LMC's L_x -size diagram


- The 6 M33 SNRs mostly among the group of medium-sized (10-30 pc), X-ray-bright SNRs
- 3 possible origins:
- (1) Core-collapse SNRs interacting with dense clouds
- (2) Core-collapse SNRs with pulsar-wind nebulae (3) Type Ia SNRs

Comparing different bands can reveal some spectroscopic information

This method can be used to search for Balmer-dominated Type Ia SNRs.

M33 SNRs revealed in HST broad-band images:

- Shell morphology similar to N103B in the LMC (an Type Ia SNR interacting with CSM)
- A possible candidate for Type Ia SNR
- Extend loop not clearly detected in broad bands
- Filamentary structures
- The faint extended lobes not clearly detected in broad bands
- O supergiant projected within ~10 pc from the shell center
- SNR shell has 2 openings in the NE and SW
- Asymmetric shell
- Thin shell morphology
- A-F supergiant projected
- within ~10 pc
- The only M33 SNR observed in $HST H\alpha$
- In the outskirt of giant HII region NGC 604

N63A MOS Hα N103B MOS H α N132D MOS H α N49 MOS H α Comparing with SNRs -69°37'00" -66°01'00" in the LMC: N103B: Type Ia SNR 43'00" interacting with CSM g N132D, N23, N49, N63A: X-ray bright CC SNRs interacting with dense clouds 25m50.0s

*Blue contours: Chandra X-ray

Conclusions

- SNRs detected in HST broad-band images are also those in the densest medium.
- 2. Broad-band images can still be used to search for Balmer-dominated Type Ia SNRs. F814W includes forbidden lines but no Balmer lines.

³Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801, USA