The circumstellar media of superluminous SNe

Claes Fransson Stockholm University

R. Lunnan, P. M. Vreeswijk, S. E. Woosley, S. Schulze, Lin Yan and the iPTF and ZTF SLSN collaborations

Superluminous Type I SNe

Mag < -21 → Peak luminosities > 10⁴⁴ erg s⁻¹ Radiated energy up to ~10⁵¹ ergs Type I: No H, Type II: Strong H lines

Models:

- Magnetar M_{ZAMS} ?
- Pair instability explosions. $M_{ZAMS} > 140 M_{\odot}$
- CS interaction: Works well for Type II (with H) and bright Ilns. Proposed for Type I.
- Pulsational pair instability + CC $80 < M_{ZAMS} < 140 M_{\odot}$. Probably end as massive $30 - 40 M_{\odot}$ (LIGO BHs?)

At least the last two require/predict a dense CSM. Where is the direct evidence for this in the Type I SLSNe? No narrow lines seen as for the Type IIn Sne.

The Type I SLSN iPTF 16eh.

R. Lunnan, CF, Vreeijswijk, Woosley+, Nature Astronomy 2, p. 887, 2018.

At peak g ~ -22.5. Upper range of luminosity

z = 0.428 → UV spectrum
to ~2500 Å
No H or He lines: Fairly
'ordinary' superluminous
Type I SN

Hain exception: Strong
 Mg II 2795.5, 2802.7
 emission at late epochs

Mg II 2795.5, 2802.7 Å

Initially absorption, later emission

Line moves from -3300 km/s to + 3300 km/s during ~350 days

Redshift evolution natural effect of a light echo produced by resonance line scattering.

Requires the shell to be expanding and t_{SN} << R_{shell}/c

Early emission: blueshifted (if photospheric emission strong: absorption)

Late emission: redshifted

Monte Carlo calculation of line scattering of photospheric continuum at 2800 by Mg II 2795.5, 2802.7 Å from CS shell

Photospheric continuum from observations (after ~50 days)

Standard light curve

With early burst. Can be excluded!

 Peak velocity of absorption/emission line shift from -3200 to + 3400 km s⁻¹ on a time scale of ~350 days

FWHM nearly constant
 ~ 1500 km s⁻¹

• Emission line flux

Distance to shell ~ 130 light days, i.e. 3.4×10^{17} cm Thin shell 130 – 137 light days Linear velocity evolution \rightarrow Close to spherical. Velocity ~ 3300 km s⁻¹ \rightarrow Time scale since ejection ~ 32 years.

Origin of shell:

Previous LBV-like ejection? Cf. Eta Car (shell velocity 2000-6000 km s⁻¹). Likely to be too asymmetric for velocity and light curve

evolution

N. Smith

Pulsational pair-instability ejection

(e.g., Woosley, Blinnikov, Heger 2007, Woosley 2017, Sorokina+ 2016, Leung+ 2019...).

40 $M_{\odot} < M(He) < 65 M_{\odot}$ Pair creation removes pressure \rightarrow collapse, increase in T \rightarrow unstable O burning \rightarrow expansion and mass ejection

Mass ejections after each pulse. Ejected mass 1 – 10 $\rm M_{\odot}$,

Time scale between last major pulse and core collapse sensitive to He core mass

- Time scale of 32 years consistent with final ejection from a \sim 50 54 M $_{\odot}$ He-core model (ZAMS-mass 100-120 M $_{\odot}$).
- Velocity 2000 3000 km/s, insensitive to He-core mass for bare He-cores. Close to observed.

Is iPTF16eh unique? SN2018ibb

S. Schulze et al 2019, in prep.

Discovered Nov. 2018 z = 0.166 Peak magnitude r -21.8 Very slow evolution, similar to SN 2015bn

At high resolution: VLT X-shooter spectra

Schulze et al 2019, in prep.

- Mg II lines shifted by 2900 km/s to blue
- Weak P-Cygni emission
- Wide lines ~ 700 km/s (too wide for intervening galaxies)
- Little evolution in line profile or velocity shift from +33 to +109 days

- No echo seen, but need the SN to fade.
- Absorption line profile gives information about location relative to SN and velocity within the shell. Modeling ongoing.

Other cases of CSM signatures: $H\alpha$ in iPTF13ehe

Strong, broad H $\alpha \sim 325$ days from explosion Velocity width > 4000 km s⁻¹ Shell radius ~ 4x10¹⁶ cm Excitation not clear: Shocks, X-ray photoion.,

Yan et al., 2015, 2017

How common are shells around Type I SLSNe?

Many selection effects against shell detections:

- Mg II 2795, 2803 → z > 0.15
- Bright enough for high resolution spectroscopy
- Frequent monitoring especially at late epochs for echo when SN faded
- For echo $R_{shell} > c t_{decay}$
- Large variety in ejection time scale and therefore R_{shell} from PPI models (months to decades)

Can be very common.

Conclusions

Resonance line echoes very useful for deriving shell properties

Shell in iPTF16eh consistent with pulsational pair instability ejection of ~ 53 M $_{\odot}$ He core (~100-120 M $_{\odot}$). Likely to have collapsed to a massive BH.

iPTF16eh not alone, but only one with an echo (yet)

At least some Type I SLSNe have massive shells. This fraction can be large due to selection effects. More monitoring of luminous cases needed.

Far UV best region: Chemical composition, strong lines... Many resonance lines from high (C IV, NV, Si IV..) and low (C II, O I, Fe II) ionization ions in UV \rightarrow HST

