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Superluminous Type I SNe
Mag < -21  Peak luminosities > 1044 erg s-1

Radiated energy up to ~1051 ergs
Type I: No H, Type II: Strong H lines 

Models:  
• Magnetar MZAMS ?
• Pair instability explosions.  MZAMS > 140 M⊙
• CS interaction: Works well for Type II (with H) and bright 

IIns. Proposed for Type I.
• Pulsational pair instability + CC        80 < MZAMS < 140 M⊙. 

Probably end as massive 30 – 40 M⊙ (LIGO BHs?)

At least the last two require/predict a dense CSM. Where is 
the direct evidence for this in the Type I SLSNe? No narrow 
lines seen as for the Type IIn Sne.

Pastorello+ 2010



The Type I SLSN iPTF 16eh.      

At peak g ~ -22.5. Upper range of luminosity

R. Lunnan, CF, Vreeijswijk, Woosley+, 
Nature Astronomy 2, p. 887, 2018.



z = 0.428  UV spectrum 
to ~2500 Å

No H or He lines: Fairly 
‘ordinary’ superluminous
Type I SN

Main exception: Strong 
Mg II 2795.5, 2802.7 
emission at late epochsMg II



Mg II 2795.5, 2802.7 Å

Initially absorption, later 
emission

Line moves from -3300 km/s to 
+ 3300 km/s during ~350 days
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Requires the shell to be 
expanding and tSN << Rshell/c     

Early emission: blueshifted
(if photospheric emission 
strong: absorption)

Late emission: redshifted

Redshift evolution natural effect of a light echo produced by 
resonance line scattering.



Monte Carlo calculation of line scattering of photospheric
continuum at 2800 by Mg II 2795.5, 2802.7 Å from CS shell

Photospheric continuum 
from observations (after 
~50 days)

With early burst. 
Can be excluded!

Standard light curve



• Peak velocity of 
absorption/emission 
line shift from -3200 to 
+ 3400 km s-1 on a time 
scale of ~350 days

• FWHM nearly constant 
~ 1500 km s-1

• Emission line flux



Origin of shell:
Previous LBV-like ejection? Cf. Eta Car (shell velocity 2000-6000 
km s-1). Likely to be too asymmetric for velocity and light curve 
evolution

Distance to shell ~ 130 light days, i.e. 3.4x1017 cm
Thin shell  130 – 137 light days
Linear velocity evolution  Close to spherical. 
Velocity ~ 3300 km s-1 Time scale since ejection ~ 32 years.

N. Smith



Pulsational pair-instability ejection
(e.g., Woosley, Blinnikov, Heger 2007, Woosley 2017, Sorokina+ 2016, Leung+ 2019…). 

Woosley 2017

Time scale between last major pulse and core collapse sensitive 
to He core mass

Core T

40 M⊙ < M(He) < 65 M⊙
Pair creation removes pressure 
 collapse, increase in T 
unstable O burning 
expansion and mass ejection

Mass ejections after each pulse. 
Ejected mass 1 – 10 M⊙ ,



• Time scale of 32 years consistent with final ejection from a  
~ 50 - 54 M⊙He-core model (ZAMS-mass 100-120 M⊙).  

• Velocity 2000 - 3000 km/s, insensitive to He-core mass for 
bare He-cores. Close to observed. 

Woosley 2017
Leung et al. 2019

iPTF16eh ~32 years



Discovered Nov. 2018
z = 0.166
Peak magnitude r  -21.8
Very slow evolution, similar to SN 2015bn

Is iPTF16eh unique? SN2018ibb
S. Schulze et al 2019, in prep.



At high resolution: VLT X-shooter spectra

Schulze et al 2019, in prep.

• Mg II lines shifted by 2900 km/s to blue

• Weak P-Cygni emission 

• Wide lines ~ 700 km/s (too wide for intervening galaxies)

• Little evolution in line profile or velocity shift from +33 to +109 days



• No echo seen, but need the SN to fade. 
• Absorption line profile gives information about location 

relative to SN and velocity within the shell. Modeling 
ongoing.

Singlet line with different shell 
extents relative photosphere
1 – 1.5
1.2 – 1.5
1.4 – 1.5
3.8 – 4.0



Yan et al., 2015, 2017
Other cases of CSM signatures: Hα in iPTF13ehe

Strong, broad Hα ~  325 days from explosion 
Velocity width > 4000 km s−1

Shell radius ~ 4x1016 cm
Excitation not clear: Shocks, X-ray photoion., ….



Many selection effects against shell detections:
• Mg II 2795, 2803  z > 0.15
• Bright enough for high resolution spectroscopy
• Frequent monitoring especially at late epochs for echo 

when SN faded
• For echo  Rshell > c tdecay

• Large variety in ejection time scale and therefore Rshell

from PPI models (months to decades)
Can be very common. 

How common are shells around Type I SLSNe?



Conclusions
Resonance line echoes very useful for deriving shell 
properties 

Shell in iPTF16eh consistent with pulsational pair instability 
ejection of ~ 53 M⊙He core (~100-120 M⊙). Likely to have 
collapsed to a massive BH.

iPTF16eh not alone, but only one with an echo (yet)

At least some Type I SLSNe have massive shells. This 
fraction can be large due to selection effects. More 
monitoring of luminous cases needed. 

Far UV best region: Chemical composition, strong lines… 
Many resonance lines from high (C IV, NV, Si IV..) and low (C 
II, O I, Fe II) ionization ions in UV  HST
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