On the interaction of Type Ia SNRs with Planetary Nebulae

Alexandros Chiotellis Panos Boumis

National Observatory of Athens Chania, June 2019

Type la Supernovae (SNe la)

"Explosions of CO white dwarfs in binary systems, which get destabilized through mass accretion from the companion star"

SNE IA ZOO

Accretors:

- Cataclysmic Variables
- Symbiotic stars
- Recurrent Novae

Mergers:

- Double degenerate
- Core degenerate
- Violent mergers

The (controversial) observational evidence for SNRs Ia + CSM interaction

Kepler's SNR: Interaction with a dense AGB wind bubble (Chiotellis+ 2012; Patnaude +2012; Burkey+2013, Toledo-Roy+ 2014)

RCW 86 : Interaction with an extended cavity (Vink et al. 1997, Williams et al. 2011; Broersen et al. 2014) **Tycho's SNR** : The SNR is surrounded by an expanding molecular bubble (Zhou+ 2016; Chen+ 2017) Accretion winds (Hachisu+ 1996)

The (controversial) observational evidence for SNRs Ia + CSM interaction

Observations: there is no such an AGB star in the center of Kepler's SNR (Kerzendorf et al. 2014; Ruiz-Lapuente (2017)

RCW 86 : Interaction with an extended cavity (Vink et al. 1997, Williams et al. 2011; Broersen et al. 2014)

Tycho's SNR : The SNR is surrounded by an expanding molecular bubble (Zhou+ 2016; Chen+ 2017) Accretion winds (Hachisu+ 1996)

The (controversial) observational evidence for SNRs Ia + CSM interaction

Kepler's SNR: Interaction with a dense AGB wind bubble (Chiotellis+ 2012; Patnaude +2012; Burkey+2013, Toledo-Roy+ 2014)

Observations: there is no such an AGB star in the center of Kepler's SNR (Kerzendorf et al. 2014; Ruiz-Lapuente (2017)

RCW 86 : Interaction with an extended cavity (Vink et al. 1997, Williams et al. 2011; Broersen et al. 2014)

Tycho's SNR : The SNR is surrounded by an expanding molecular bubble (Zhou+ 2016; Chen+ 2017) Accretion winds (Hachisu+ 1996)

Tycho: - donor star? Debatable (Ruiz-Lapuente talk) - Not a steadily accreting WD (Woods+2017)

now the question is...

➢ Is a circumstellar medium where:

a) Its formation can naturally be explained by the binary evolution towards a SN Ia?

b) it can explain (at least some of) the properties observed in SNRs Ia?

We suggest that such a CSM could potentially be represented by Planetary Nebulae (PNe)

Planetary Nebulae (PNe)

Interactive Stellar Wind theory (Kwok et al. 1978)

- AGB: slow, dense stellar wind
- Contraction of AGB core: Fast, tenuous wind

Planetary Nebulae (PNe)

Interactive Stellar Wind theory (Kwok et al. 1978)

- AGB: slow dense stellar wind
- Contraction of AGB core: Fast tenuous wind
- Photoionization from the hot central star

Planetary Nebulae (PNe)

Interactive Stellar Wind theory (Kwok et al. 1978)

- AGB: slow dense stellar wind
- Contraction of AGB core: Fast tenuous wind
- Photoionization from the hot central star

Why Planetary Nebula?

Motivation (I): PNe nature

 <u>PNe central stars</u>: low-mass binary systems involving one or two WDs.
 (De Marco et al. 2013)

ightarrow As the expected progenitors of SNe Ia

The SN Ia + PNe scenario host both the SD and DD paths

2) *Binary population synthesis models:* Several SNe Ia progenitors pass through the AGB/PNe phase.

Wind mass transfer and the progenitors of Type Ia Supernovae C. Abate ¹ & A. Chiotellis ² Vrgelander Institut für Astronomic, Universität Born, Germany, ¹ NACANS, National Observatory of Athens, Greece	
<text><list-item><list-item><text><text><text></text></text></text></list-item></list-item></text>	<text><text><text><text><text></text></text></text></text></text>
Interfere processes and angular momentum losses based on balatics and baland and the loss and the community of ABD programmers and an angular sector of the community of ABD programmers and the ABD and the community of ABD programmers and the ABD and the community of the ABD programmers and the ABD and the ABD and the ABD programmers and the ABD and the	$\frac{1}{2} - \frac{1}{2} - \frac{1}$
Peter 3 model with .	5. Conclusions • Loss idealized treatment of wind mass transfer (VRLOF) in binary systems nonsease the contribution of AGB stars in SNe is progenitor window of 100 - 300 Mpr. • Considering in addition non-efficient anglem momentum losses and desothed by balfacis simulations the contribution of AGB stars to the ID of channel increase by a Balfor direct.
Fg. 1, then the descent of the second secon	Our reachs suggest that AGB tars may play a significant role as SNe is properties, both in the SD and DD channes. Polence

(See Poster: S10.1)

Motivation (II): Observational evidence

1) Henize 2–428:

DD super-Chandra central binary
→ will merge triggering a SNe Ia.
(Santander- Garcia et al. 2015)

2) Polarization measured of pre-PNe
 → very similar to polarization curves
 of several SNe Ia (Cikota et al. 2017)

Simulating the SNR Ia – PN interaction model

The result depends on:
1) the properties of the PN
2) the time delay between
the PN formation and the SN la explosion

First attempt:

- PN structure: bipolar
- Time delay: t_{delay} = 0 Myr
 - $t_{delay} = 1.0 Myr$

 $-t_{delay} = 8.0 \text{ Myr}$

Aristarchos

telescope

Formation of a bipolar PN

- 2D hydrosimulations
- Code AMRVAC (Keppens + '04)

Wind Formalism

- Asymmetric wind is imposed as an inflow at the inner boundary
- Asymmetry described by trigonometrical function

 $\rho(\theta) = (1 - a \sin(\theta)^{\kappa})^{-1} \times (\dot{M}_p / 4\pi \ u(\theta) \ r^2)$

 $u(\theta) = (1-b\,\sin(\theta)^{\kappa}) \times u_p$

a,b,ĸ = constants

→ Determine the density/velocity contrast from poles to equator and their angular gradient

1^{rst} step AGB wind

Formation of a bipolar PN

Kepler's SN: A SNe Ia Interacting with a bipolar PN

• Dynamics: $\mathbf{r} \propto \mathbf{t}^{0.6} = > m = 0.6$ (overall) $\mathbf{r} \propto \mathbf{t}^{0.35} = > m = 0.35$ (northern) (Vink 2008; Katsuda et al. 2008)

 \Rightarrow M_{shell} > 1 M_{\odot}; Nitrogen rich (Blair et al. 2007)

Hα narrow component: Blueshifted → **u**_{*} ≈ 250 km s⁻¹ (Bandiera & van der Berg 1991; Sollerman et al. 2004)

Model main Ingredients:

CSM= Bipolar PNe + high systemic motion

Kepler's SN: A SNe Ia Interacting with a bipolar PN

The SNR + bipolar PN interaction model can explain:

Asymmetry and the chemical abundances of the shell

- ✓ The formation of two antisymmetric lobes (ears) in Kepler's morphology
- ✓ The Expansion rates of the remnant and its northern part

Condition: The SNe Ia occurred right after the PN formation

Conclusions

• Model of SNe Ia + PNe:

PNe seem promising candidates for the CSM observed around SNRs Ia as:

 \diamond Can naturally be explained by the SN Ia binary evolution theory

• <u>A Henize 2-428 – like PN the progenitor of Kepler's SNR?</u>

♦ Overall morphology and dynamics of SNR + CSM composition and distribution
 ♦ The formation of two antisymmetric lobes (ears)

• Ears formation in SNR's morphology: Interaction history with a bipolar CSM