"Asymmetric Expansion of the Fe ejecta in Kepler's Supernova Remnant" TK et al. 2018 doi: 10.1093/pasj/psy085 arXiv: 1807.04029

Doppler velocity measurement of Fe ejecta in Kepler's SNR

Tomoaki KASUGA (The University of Tokyo)

Toshiki SATO (RIKEN, NASA/GSFC, University of Maryland)

Koji MORI (University of Miyazaki)

Hiroya YAMAGUCHI (ISAS/JAXA)

Aya BAMBA (The University of Tokyo, RESCEU)

Today's Goal

1. Doppler Maps of Fe Ejecta in Kepler's SNR

Doppler Velocity

Doppler Broadening

(TK et al. 2018)

2. Comparison to Tycho's SNR

Introduction

- One of the crucial clues: the symmetry of ejecta kinematics
 ⇒ Studying the expansion structure of heated ejecta in SNRs directly by K-shell emission lines in the X-ray band (cf. Williams' talk)
- Fe ejecta is the best probe ! (not mixed with ISM)

ex.) Fe ejecta asymmetry in violent merger model \rightarrow

Lopez+ 1⁻

Supernova Remnants II

Kepler's SNR (SN1604)

- Young Ia SNR with Bright & Strong Fe emission lines

(Park+ 13; Katsuda+15)

 \Rightarrow Suitable for probing the ejecta motion

Proper motion of forward shock Si kinematics of several knots

Our goal: the whole expansion structure
 ⇒ Measuring Doppler (line-of-sight) velocity is important.

Doppler Measurement

Doppler Measurement

X-ray Spectrum in the whole of Kepler's SNR by Chandra

Supernova Remnants II

Doppler Broadening

If the SNR expands spherically ...

Results of Kepler

Fe Ka Doppler Mapping

Mean Energy Probe of line centroid

not uniform ...

Energy Standard Deviation

Fe Ka Doppler Mapping

Mean Energy

Probe of line centroid

Fe Ka Doppler Mapping

(keV)

6.5

Mean Energy Probe of line centroid

Energy Standard Deviation

Low line centroid & Narrow line width

 \Rightarrow Ejecta are only moving away from us.

First Detection of the Red-Shifted Component !!! Also find some Blue-Shifted Components !

6.3

Fe Expansion Structure

We estimate the ionization state by using Fe K β line, and calculate K α centroid at the static system. \Rightarrow The energy shift tells us the line-of-sight velocity.

Comparison to Tycho

Fe Maps

low Mean Energy & narrow Standard Deviation \Rightarrow red-shifted !

Fe Maps

Supernova Remnants II

Fe Maps

Si Maps for better statistics

See also S9.2 Millard's Poster with HETG analysis

Different Explosion Mechanism ?

Conclusion

In this talk

- The ejecta kinematics of SNR is one of the crucial clues to understand the explosion mechanism of SN.
- We measured Doppler velocity of Fe ejecta using the mean value and standard deviation of photon energy.
- We found the asymmetric expansion structure of Fe ejecta in the line-of-sight direction in Kepler's SNR.
- On the other hand, ↑(TK et al. 2018)
 Tycho's SNR is very symmetric unlike Kepler.
- Their explosion mechanism might be different.

Future Works

- Systematic analysis with other SNRs.
- Similar analysis with Si, S, Ar etc... lines.

* This research was supported by a grant from the Hayakawa Satio Fund awarded by the Astronomical Society of Japan.