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Image: Tycho supernova remnant. Credit: Chandra X-ray Observatory.



MOTIVATION

Feedback from active galactic nuclei, stellar winds, and supernovae plays a crucial
role in galaxy formation.
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Image: The Bubble Nebula. Image: Tycho supernova remnant.
Credit: Hubble Space Telescope. Credit: Chandra X-ray Observatory.
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These objects inject energy and momentum into the interstellar medium.
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MOTIVATION

To produce galaxies consistent with observations, models
typically boost the momentum yield calculated for single
supernova remnants (SNRs) by a factor of 3-5.
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THE ROLE OF COSMIC RAYS

Cosmic rays (CRs) are produced at SNR blast waves via diffusive shock acceleration.
Their effect is two-fold:

1. Acting as a relativistic fluid, CRs suffer less adiabatic loss than thermal gas; at late times
they dominate the internal pressure.
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THE ROLE OF COSMIC RAYS

Cosmic rays (CRs) are produced at SNR blast waves via diffusive shock acceleration.
Their effect is two-fold:

1. Acting as a relativistic fluid, CRs suffer less adiabatic loss than thermal gas; at late times
they dominate the internal pressure.

2. CRenergy is not radiated at late times, but rather continues to support expansion.
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A SIMPLE ESTIMATE

After the thermal gas radiates away its

energy, cosmic rays push the remnant
outward.

PBUBBLE = PCR
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A SIMPLE ESTIMATE

After the thermal gas radiates away its
energy, cosmic rays push the remnant
outward.

Momentum becomes constant when
pressures equilibrate:

IIIN

/ % = nisMmkl1

CR acceleration
efficiency
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A SIMPLE ESTIMATE

Assume ejecta mass is negligible and estimate the final SNR mass:

fESNNmp
kT

Assume final SNR velocity is of order the ISM sound speed:

My = nigmpm,V =

YET
’Uf — CS —
KTy




A SIMPLE ESTIMATE

Momentum deposited is simply the final mass times the final velocity:

ypm
Pdep — vaf ~ ‘SESN\/ kTp

Assumingy =5/3 and p = 1.4:

B T —1/2
Pdep ~ 9.44 x 105 ‘f SN ( > M@km S_1

0.1 105%erg \ 8000K




A SIMPLE ESTIMATE

WITH COSMIC RAYS

—1/2
S ESN T ! 1
o 22 9.44 x 10° M~k
Pdep © 01105 erg \ 8000K Ch

WITHOUT COSMIC RAYS

~ 5 —1 Factor of ~3 lower
Pdep ~ 2.8 x 10 M(ka S """ than SNRs with CRs




A MORE DETAILED CALCULATION




1. EJECTA-DOMINATED STAGE

Energy is conserved and swept up
mass < ejecta mass.

CR contribution to expansion is
negligible.

Use analytic approximation from
Truelove & McKee 1999 (dashed
line).
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2. SEDOV-TAYLOR STAGE

Energy is conserved and swept up
mass > ejecta mass.

Use thin-shell approximation.
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THIN SHELL APPROXIMATION

Assume mass is confined to a thin shell.

Shell expands due to pressure inside
the hot bubble.




THIN SHELL APPROXIMATION

Enforce conservation laws:

47
3
Effective
adiabatic index
depends on § b= ESN

2  d(Muy
l ( 1) = 47 R2, (Pyy, + Pcr — Prsum)

Vet + 1 dt N\a‘-”s




3. RADIATIVE STAGE

T < 109K = thermal gas radiates -

away energy. 102} 110
Use modified thin-shell 1103 <
approximation. 2 o ~
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MODIFIED THIN SHELL APPROXIMATION

Enforce new conservation laws:

41
M (Rsp) = Me; + ?RghPISM

t
E(Rsh) m— ESN — / dTQWXth,OUShRgh

trad

= 47 R%, (P, + Pcr — Pisum)
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RADIUS &
VELOCITY

EVOLUTION
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EFFECT
OF ISM
DENSITY

(keeping pressure constant)
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EFFECT
OF ISM
DENSITY

(keeping pressure constant)
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CONCLUSIONS

1. This work represents the first semi-analytical calculation—in the thin-shell
approximation limit—of SNR evolution through the Sedov-Taylor and radiative stages.
Our approach accurately reproduces the main features of hydro simulations (w/o CRs).

1. The presence of cosmic rays prolongs the expansion of SNRs, resulting in 2-3 times
more momentum deposition in the ISM.

This boost becomes more pronounced in dense environments.

2. Galaxy formation simulations that include supernova feedback via sub-grid models
should account for the additional contribution of the CRs accelerated at SNR shocks.

For more information, please see Diesing & Caprioli 2018.
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