Study of Extragalactic Supernova Remnants

Maria Kopsacheili

University of Crete/FORTH

Andreas Zezas Ioanna Leonidaki Panos Boumis

European Research Council NGC 7793 (3.7 Mpc)

NGC 45

(6.8 Mpc)

NGC 1313 (4.2 Mpc)

> NGC 55 (2.0 Mpc)

Galaxy sample

- Spiral galaxies (already irregular galaxies, Leonidaki et al.,
- 2010; 2013)
- Nearby galaxies
- Face on or very "transparent" galaxies • X-ray data available Observations with Blanco 4m telescope at

Leonidaki et al, 2010

Detection - Photometry - Flux calibration

Detection on Ha+[S II] image (SExtractor) IRAF for photometry

Automated SNR selection

- Continuum subtraction
- Counts $H\alpha > 3\sigma$
- Hα excess-magnitude diagram
- [S II]/H α > 0.4 (Mathewson & Clarke, 1973)
- In total ~180 candidate SNRs (down to 6.5x10⁻¹⁷ erg/cm²/s)

NGC 7793 (119 sources)

NGC 45

(13 sources)

NGC 1313 (27 sources)

0

NGC 55 (20 sources)

Incompleteness

Automated process for SNR detection

- Creation of artificial objects using the PSF of each image
- Same process with artificial objects
- Incompleteness map
- Luminosity function

Incompleteness map for NGC 7793

The two-dimensional completeness map shows the fraction of SNRs that we are able to detect as function of their H α and [S II] flux.

(Kopsacheili et al. 2019, in prep.)

Incompleteness map for NGC 7793 – shock velocities

(shock models from Allen et al. 2008)

Shock and photoionization models

MAPPINGS III: (Groves et al. 2004; Dopita et al. 2002; Sutherland & Dopita 1993; Binette et al. 1984)

- Shock models (Allen et al. 2008)
 Velocity (V): 100 1000 km/s
 Magnetic parameter (B/n^{1/2}): 10⁻⁴ 10µGcm^{3/2}
 Density (n): 0.01, 0.1, 1.0, 10, 100, 1000cm⁻³
 Abundance: LMC, SMC, solar, 2xsolar
- <u>Photoionization models</u> (Kewley et al. 2001; Fioc & Rocca-Volmerange 1997; Leitherer et al. 1999; Levesque et al. 2010, Vázquez & Leitherer 2005)

Ionization parameter (Q): $2x10^{5} - 4x10^{8}$ Metallicity (Z): 0.01 - 3ZAge: 0 - 10 Myr Density (n): 10, 100, 350cm⁻³

[S II]/H α ratio for photoionized and shock-excited regions

♦ MAPPINGS III models
 ♦ Photoionized regions → HII regions
 ♦ Shock-excited regions → SNRs

 Significant fraction of SNRs with [S II]/Hα < 0.4
 Contamination by HII regions Need to reconsider the traditional SNR diagnostic

[N II](λ6583), [S II](λλ6716, 6731), [O I](λ6300), [O III](λ5008) [OII](λλ3727, 3729)

2D diagnostics

3D diagnostics

Support Vector Machine (SVM)

- Classification method
- Separation line (2D) or surface (3D)
- Decision function Kernel

$$K(x^{T}, x_{i}) = (\gamma < x, x_{i} > + r)^{d}$$

where y is the kernel width parameter, x_{i} are the support vectors, r is a constant coefficient, which in our case equals to 1, and d is the degree of the polynomial.

d = 1 (linear kernel), 3 (polynomial kernel of 3^{rd} degree) y = 0.2 - 1.0

3D diagnostics

n

abcCompleteness:0.98950.98950.9885Contamination:0.01200.01620.0121

(Kopsacheili et al., 2019, MNRAS, submitted)

a

[O I]/Hα-[O II]/Hβ-[O III]/Hβ

[S II]/Hα-[O I]/Hα-[O III]/Hβ

2D diagnostics

d e f Completeness: 0.9877 0.9832 0.9014 Contamination: 0.0116 0.0232 0.0579

(Kopsacheili, M. et al., 2019, MNRAS, submitted)

Compare real data

HII regions: Zurita & Bresolin, 2012; Bresolin, 2007; Tsamis, 2003; Castellanos et al., 2002; Vílchez & Esteban, 1996; Russel & Dopita, 1990; Kwitter & Aller, 1980; Dufour, 1975

<u>SNRs:</u>

Long et al., 2019; Lee et al. 2015; Leonidaki et al., 2013; Matonick & Fesen, 1997

More effective 1D diagnostic

Completeness: 97.2% Contamination: 2.4%

Summary

- SNR detection using an automated way
- Use of artificial objects in order to quantify incompleteness maps and construct Luminosity Functions
- New 2D and 3D diagnostics for SNR classification
- Introduce a 1D diagnostic ([O I]/H α > 0.017) sensitive to lower velocity SNRs.

Thank you!