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PSR J0002+6216
J0002+6216
* Discovered in “blind” periodicity searches of Fermi data 5
. . . ® Wu et al. (2018)
using the Einstein@Home volunteer computer (Clark et |
al. 2017)
e Relatively normal gamma-ray pulsar: . 3t 1
P=115 msec, B=0.8x1012 G, E=1.5x10% erg s’! S
)
Characteristic age 7= 306 kyr &
 Weakly detected in radio (Wu et al. 2018) 99
i -
Dispersion measure puts distance at 7 kpc -g -
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Serendipitous Discovery:

U.S.NAVAL

RESEARCH a Hypersonic Pulsar-wind Nebula...

Targeting unidentified (oops!)

Fermi sources 62211 o

_ 20Q@
1-hr integration at 20 cm (1-2 GHz) 8
with 12-arcsec resolution s °r

= 17 —

8 sl
Used special experimental 5L
algorithms within CASA @

14 000315

— Wideband AW projection with
conjugate beam models and

— Multi-term, multifrequency synthesis
— Multi-scale clean
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“ié‘:’s"éﬁ‘ri’éL ... rather near to SNR CTB1...
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A middle-aged SNR (7t=10£0.2 kyrs)

e optical and radio. circular shell of radius 17.8
arcmin

e X-rays mixed morphology SNR with evidence for
enhanced heavy element abundances

* Jocated in Perseus arm with distance of
d,=2.0£0.4 kpc
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Extrapolation of least squares fit of
7-arcmin tail passes within 5-11
arcsec of the geometric center of
SNR CTB1, 28+1 arcmin away.

Very small a posteriori probability
of chance coincidence.

If PSR JO002+6216 is from the SN,
predicts proper motion of

U =AB/71=168+35 mas/yr at a
PA of 113 degrees.




usNavaL | Potential Issues and Implications
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If the association is true, then

CSIRO PSRCAT

* The pulsar is much younger than its
characteristic age (born spinning slowly)

km/s.

* The pulsaris moving at ~810 d
Recall dp,=7kpc and dgz=2kpc.

kpc -
407

Really desire an independent measure of the
pulsarproper motion!

Murmber of Pulsars
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usNavaL | Fermi Pulsar Timing
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Fermi “instantly” gives us >10 years of data with which to o
perform pulsar timing. 550
E 20
An error in the position of a pulsar produces an annual sinusoid in the w0
pulse arrival time. So an error in the proper motion produces a linearly- ) ohe n e ibs 1as Som T 2.
growing sinusoidal error (chirp). Pois P, REVERRRC T Dol B Ry sy
SNASIEM O :
Unfortunately, young pulsars are 28000 _:f',-:. i-,,:e
o | - far fromideal! Plot at right shows — _ ‘ o B
.l S 7 % the pulsar with only its simple ' ‘5‘
- g 4 Tl - Ly 5
, _F E L3 4 spindown and position modeled. 57000 FAVA o
Y B - : The residual is timing noise. . ;
0 $H#™ % ; £ 56500
-2 r J T < S = Y . . . 5
A F ¥ ¥ 3+ : With Fermi, we have reliably 56000
s F measured proper motions really
-6 ; 11 55500
, ] only for millisecond pulsars (low

48000 49000 50000 51000 52000 timing noise) .
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usNavaL | Fermi Pulsar Timing
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Unfortunately, we also don’t 10
know what the true pulse |
profile looks like... We need ' : ‘ ' 107

the profile to get the timing
solution, and we need the
timing solution to the profile!
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So, we tried a range of
models of timing noise while
jointly fitting a model for the
template.
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Frequency (N/data_span)
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A model with three sinusoidal

Maximum Log Likelihood
i
o
o

components fully fit the data, 00 02 04 06 08 1.0
an unusually red timing noise P hase 255
signal. 450 -
445 1 —8— Data
Theory expectation if marginally significant
440

0 2 4 6 8 10 12

Number of Wave Terms



U.S.NAVAL

ESEARC

LABORATORY

Fermi Pulsar Timing
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Best-fit timing noise and
pulsar timing model prefer
proper motions that agree in
magnitude and direction with

50 1
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the values required by the
PWN-SNR direction and the
PWN-SNR offset/SNR age!

(This is one of the only
gamma-ray pulsars with a
measured proper motion —a
real testament to the quality
of Fermi data.)
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usnavaL | Putting it all together
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. 6221 o

Rule out u<63 mas/yr with 95%
confidence = 2 0

S 19
Measured: ‘S’ sl
n=115+33 mas/yr (3.50) @ L
6,=121+13° s
Inferred. 15 —
U=AB8/7=168+35 mas/yr e I | i N | |

00 03 15 00 0245 30 15 00 0145 30

9u=113i'2° Right Ascension (J2000)

What can we learn from the association?
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usnavaL | How pulsars get their kicks (and spins)
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Janka (2017)

Shock
Front

Highest V., provide severe constraints on models Accretion

N

“a
X binary disruption

X electromagnetic (“Rocket effect”)

v neutrino-driven (E,=10°3 erg)
* Vo aligned with Q 200 8 [ &

v ejecta-driven (hydro recoil; E,=10°! erg)
* Vs anti-aligned with V

ejecta
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usnavaL | Hydrodynamic or Ejecta-driving Kicks
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Originate in large-scale asymmetries seen in CC SNe explosion modeling
Signature in the SNR morphologies and (heavy element) ejecta distribution
What does the SNR CTB1 tells us?
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us.NavaL | Evidence for asymmetry in CTB 1
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X-rays are offset to NW but mixed morphology

so SNR is likely dominated by ISM o' B
X-ray spectra have enhanced heavy element i
40 -
abundances .
=y K AN
§ 30 e .
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us.NavaL | Evidence for asymmetry in CTB 1
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X-rays are offset to NW but mixed morphology
so SNR is likely dominated by ISM

X-ray spectra have enhanced heavy element
abundances

Spatial distribution of iron is consistent with
asymmetric SNe explosion

— regions not optimized wrt PSR proper motion
direction

.0 1.79¢-8 3.6e-8 5.4e-8 7.21e-8 9.0e-8
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us.NavaL | Evidence for asymmetry in CTB 1
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X-rays are offset to NW but mixed morphology
so SNR is likely dominated by ISM

X-ray spectra have enhanced heavy element
abundances

Spatial distribution of iron is consistent with
asymmetric SNe explosion

— regions not optimized wrt PSR proper motion
direction

High PSR velocity requires very asymmetric
explosion
—i.e. MV2, .= 20% E,

NS kick speed (km s ')

1000

=
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Katsuda et al (2018)
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Quick notes on the PWN
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In general, bow shock nebulae provide a “clean” probe of the pulsar wind. Resolving the bow shock is a
direct probe of the ISM density/pressure. Radio and X-ray spectra characterize the injected particles
and their evolution downstream.
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New observations

C & X band VLA observations 6221
20
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us.NavAL | Summary and Future Work
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A new, very high-velocity (>1000 km/s) pulsar associated with a middle-aged supernova remnant provides
insight into, and hopefully some constraints on, core collapse and pulsar kicks.

* PSR was not born spinning rapidly (P =113 ms)
* highly asymmetry SN was required to give PSR its natal “kick”

A new bow shock nebulae, potentially one of the closest with such a high Mach number, provides a new way
to probe pulsar winds and the ISM.

Physical properties are similar to a subset of bow-shock PWN that includes The Duck, The = Mouse
and the Frying Pan

Hoping for Chandra imaging of the PWN head to detect the youngest injected electrons and measure flow
properties.

VLBA+VLA+Effelsberg VLBI observations will determine parallax and more accurate proper motion (in two
years).

Future high-frequency VLA observations can resolve the head to measure standoff distance and Mach disk;
polarimetry to study magnetic field in downstream flow.
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DM, = 2neRs,/1 — (R/Rs)?

| v
< s
dpy=7 kpc  d=3.5 kpc SUBDOS d=2 kpc
d=3.5 kpc d=2 kpc
DM_=50 pc cm?3 DM_=130 pc cm3 DM,=200 pc cm3
EM,=2500/L,. pccm™® EM,=1.7x10%/L,. pc cm™® EM,=4x10%/L,. pccm™®
A,=2.1 mag A,=1.3 mag A,=0.9 mag

Bottom line:
d=2 kpc is the closest distance that satisfies all constraints
Agrees with empirical relation between Ly and E
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usnavaL | Pulsar Birth Periods: Evidence for Injection
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If the association is real why is

TonR<< T ? B

T, assumes P_<<P fowe =4 P 1 , .

n=3 (dlpO|€) P,=P ll—ﬁ L e e ARaaaaaas anaas aans :
' i X« ]

PSR J0002+6216 was born with i
a period P,~113 ms 13¢ ° "o ° ]
Consistent with there being a 2 _ R N D
wide distribution of pulsar w 19F o = 7
birth periods (10-300 ms) D T
Agrees with results of CC tLp E
models of massive stars 0 ]
j 01 S R B AP BN B B

-3.5 -3.0 =25 -2.0 -1.5 -1.0 -0.5 0.0
log P, 22



