

Gamma-ray observations of Pulsar Wind Nebulae

Marie-Hélène GRONDIN CENBG Bordeaux (CNRS-IN2P3 / Université de Bordeaux)

Supernova Remnants II: – An Odyssey in Space after Stellar death Chania, 2019 June 6

- ♦ Observations in the GeV/TeV range → disentangle between the radiation processes
- ✤ Multi-wavelength observations → constrain the physical properties of the sources

- ♦ Observations in the GeV/TeV range → disentangle between the radiation processes
- ✤ Multi-wavelength observations → constrain the physical properties of the sources

Gamma-ray astronomy : 3 strategies

(e.g. Fermi-LAT : 30 MeV – 300 GeV)

full sky coverage good angular resolution at high energy

Cherenkov telescopes (e.g. H.E.S.S.: 30 GeV – ~80 TeV)

- small field of view
- excellent angular resolution

Energy

HAWC

Air shower arrays : HAWC (100 GeV – 100 TeV)

- full sky coverage
- good angular resolution

Status in the TeV range with IACT...

 Improved sensitivity of current generation of Imaging Atmospheric Cherenkov Telescopes (IACTs)

- \rightarrow detection of ~210 VHE sources
 - \rightarrow ~120 « non-AGN » sources with |b|<5°

TeV observations of PWNe and candidates

...completed by the HAWC field of view

✤ HAWC Catalog (2HWC, 2017 with 507 days of livetime) :

 \rightarrow 39 sources

 \rightarrow 16 are >1° away from previously reported TeV sources (as in 2017)

HAWC 3.5 year skymap — 1128 days livetime: 2014-11 to 2018-04

Status in the TeV range (all instruments)

✤ ~125 « non-AGN » sources with $|b| < 5^\circ$

~35 are identified as PWNe, 4 TeV Halos, >15 PWN candidates + N157B (LMC)

The Milky Way from TeV (HAWC)...

The Milky Way from TeV (HAWC + IACT)...

...to GeV (Fermi-LAT)

•

Why do we detect so few GeV PWNe?

- PWN studies (detection, morphological & spectral analyses) require :
- A temporal analysis of the powering pulsar & substraction of the pulsed component
- A good knowledge of :
 - The diffuse background (spatial & spectral structures in the Galactic diffuse emission)
 - The instrumental point spread function (PSF) varying over the LAT range (~5° to 0.1°)

Status in the GeV range

Observations by gamma-ray satellites AGILE (since April 2007) and Fermi (since June 2008)

Fermi

- \rightarrow detection of >5000 sources from 50 MeV to 1 TeV (8 yrs, 4FGL Catalog, 2019)
 - \rightarrow ~25% unassociated sources

 \rightarrow 18 PWNe or candidates (15 being extended)

PWNe and candidates in the GeV sky

PWN evolution in a nutshell

3) TeV Halos

4) PWN candidates

1. Young PWNe

GeV-TeV : Crab Nebula, MSH 15-52, 3C 58

TeV only : SNR G0.9+0.1, SNR G21.5–0.9, Kes 75, HESS J1813–178, SNR G54.1+0.3, Rabbit

The Crab Nebula, the brightest VHE source...

- Brightest VHE galactic «steady» source, observed by every Cherenkov experiment & Fermi
- γ -ray emission below 500 MeV due to synchrotron emission
 - → electrons accelerated up to ~1 PeV
- high energy component due to IC (mainly on synchrotron photons)
 - \rightarrow fit of the IC peak at ~53 GeV (using Fermi and MAGIC results)
 - \rightarrow magnetic field constraint in the 100 200 µG range

The Crab Nebula, the brightest VHE source...

- Brightest VHE galactic «steady» source, observed by every Cherenkov experiment & Fermi
- γ -ray emission below 500 MeV due to synchrotron emission
 - → electrons accelerated up to ~1 PeV
- high energy component due to IC (mainly on synchrotron photons)
 - \rightarrow fit of the IC peak at ~53 GeV (using Fermi and MAGIC results)
 - \rightarrow magnetic field constraint in the 100 200 μG range

... but no more a standard candle

Recent Flares of the synchrotron component (Oct. 2007, Feb. 2009, Sept. 2010, Apr. 2011, July 2012, March 2013, October 2013, March 2014) :

- Compact emission region < 0.0004 pc ~ 0.04" (for D<4)
 - \rightarrow Emission from the inner nebula

... and now resolved in GeV and TeV

Hint of enery-dependent radius, not consistent with cooling => requires a very detailed modeling

TeV size > X-ray size

The PWN 3C 58

- ★ Associated to the energetic pulsar PSR J0205+6449 (Ė = 2.7x10³⁷ erg/s, τ_{char} = 5.4 kyr, P = 65.7 ms)
- Radio angular size : 6' x 9'
- Distance : 2 kpc ? 3.2 kpc ?
- Age : < 1 kyr (Stephenson 1971, Stephenson & Green 2002) or
 ~5 kyr ? (Murray et al. 2002; Bietenholz 2006; Slane et al. 2002)
- Detection of gamma-ray emission by :
 - Fermi-LAT (Ackermann et al, 2013, Li et al, 2018)
 - MAGIC (Aleksic et al, 2014)
- Time dependent spectral modeling (Torres et al, 2013) : disfavors the association with SN 1181 C.E.

Common trends for young PWNe

- From the H.E.S.S. GPS => Population of TeV PWNe on 14 + 5 firmly identified PWNe and 18 PWN candidates (HESS Coll, PWN pop, 2017)
 - TeV PWNe (and some the GeV ones) powered preferentially by young (<100 kyr) and energetic (dE/dt > 10³⁴ erg/s) pulsars

Common trends for young PWNe

- From the H.E.S.S. GPS => Population of TeV PWNe on 14 + 5 firmly identified PWNe and 18 PWN candidates (HESS Coll, PWN pop, 2017)
 - TeV PWNe (and some the GeV ones) powered preferentially by young (<100 kyr) and energetic (dE/dt > 10³⁴ erg/s) pulsars

2. Middle-aged/offset PWNe

TeV only: HESS J1303-631, HESS J1356-645, HESS J1837-069

The puzzling Vela X

- Associated with the Vela Pulsar (d = 290 pc, $\dot{E} = 7 \ 10^{36} \text{ erg/s}$, age ~11 kyr)
- Offset from the pulsar
- Status in 2011 :
 - Morphology :
 - ✤ Radio & HE gamma-rays : Halo (2° x 3°)
 - ✤ X-rays & VHE : Cocoon (length < 1°)</p>
 - Multi-wavelength spectrum :
 - strongly favors a two-component leptonic model (suggested by de Jager et al., 2008, ApJ, 689, L125)

Chandra

<u>Multi-wavelength spectrum of Vela X</u>

Why is Vela-X offset?

asymmetries in the surrounding interstellar medium give rise to asymmetries in the « ... position of the PWN relative to the pulsar and explosion site »

See also talk

by T. Temim on

Wednesday

... and even more puzzling !

- Associated with the Vela Pulsar (d = 290 pc, $\dot{E} = 7 \ 10^{36} \text{ erg/s}$, age ~11 kyr)
- Offset from the pulsar
- Status in 2011 :
 - ✤ Morphology :
 - ✤ Radio & HE gamma-rays : Halo (2° x 3°)
 - ✤ X-rays & VHE : Cocoon (length < 1°)</p>
- Status in 2012-2013 :
 - Energy dependent morphology seen with Fermi
 - H.E.S.S. : Faint emission extends beyond the X-ray cocoon

What is the origin(s) of the GeV and TeV emission ?

Chandra

... and even more puzzling (GeV) !

- Both radio halo and X-ray cocoon can be distinguished
- Cocoon : very hard spectrum ($\Gamma = 0.9$)

Analysis of Suzaku and H.E.S.S. data :

- harder emission close to the pulsar
- no hint of B turbulence

HESS J1825-137

- Source discovered in TeV during the H.E.S.S. Galactic Plane Survey (Aharonian et al, 2005, Science, 307, 1038)
- Identified as the PWN G18.0-0.7, associated to the energetic radio loud pulsar PSR J1826-1334 ($\dot{E} = 2.8 \times 10^{36}$ erg/s, age ~20 kyr, distance ~4 kpc)
- Significantly extended (2-D Gaussian of σ = 0.23°)
- Energy-dependent morphology observed at VHE due to cooling mechanisms (Aharonian et al, 2006, A&A 460, 365)
- Detected by Fermi (Grondin et al, 2011)

Particle transport in HESS J1825-137

- Clear energy—dependent morphology seen with H.E.S.S. (HESS Coll., 2019)
- Softening of the spectral index with distance to the pulsar
 - => cannot be explained by diffusion only
 - => confirms that electrons cooling over time are transported away from pulsar

Diameter of $1.5^{\circ} =>$ physical extension of 100 pc !

Is HESS J1825-137 a PeVatron?

Common trends for relic TeV PWNe

- Pulsar offset vs characteristic age:
 - older TeV PWNe have large offsets
 - some of them cannot be explained by pulsar proper motions
 - suggests alternative "crushing" scenario (Aharonian et al, 2015; Temim et al, 2015)

- TeV extension vs characteristic age
 - consistent with PWN free expansion initially
 - then, slower subsonic expansion
 - relic PWNe : gamma-ray size much larger than in Xrays

10¹

Characteristic age τ_c [kyr]

 10^{2}

 10^{0}

3. A new source class : TeV Halos

- Highly extended $(1.7^{\circ} 2^{\circ})$ sources detected around two pulsars : Geminga and Monogem (PSR BO656+14)
- Halos much larger than X-ray, much smaller than ** diffusion through the ISM
- Both pulsars are : *
 - ✤ associated to the nearest (250/288 pc) and oldest (300/100 kyr) PWNe detected in the TeV range
 - postulated as sources of positron excess (Hooper * et al, 2017 >< HAWC Coll. 2017)

Also mentionned by

N. Tsuji on Tuesday

TeV halos : toward pulsar discoveries ?

 ✤ 5 / 39 sources in the 2HWC catalog are correlated with bright, middle-aged (100 — 400 kyr) pulsars.

ATNF Name	Dec. (°)	Distance (kpc)	Age (kyr)	Spindown Lum. (erg s^{-1})	Spindown Flux (erg s ⁻¹ kpc ⁻²)	2HWC
J0633+1746	17.77	0.25	342	3.2e34	4.1e34	2HWC J0631+169
B0656+14	14.23	0.29	111	3.8e34	3.6e34	2HWC J0700+143
B1951+32	32.87	3.00	107	3.7e36	3.3e34	3 <u>1113</u>
J1740+1000	10.00	1.23	114	2.3e35	ranked 1.2e34	-
J1913+1011	10.18	4.61	169	2.9e36	$E_{1}^{2} = \frac{12}{12} \frac{1.1e34}{1.1e34}$	2HWC J1912+099
J1831-0952	-9.86	3.68	128	1.1e36	6.4e33	2HWC J1831-098
J2032+4127	41.45	1.70	181	1.7e35	4.7e33	2HWC J2031+415
B1822-09	-9.58	0.30	232	4.6e33	4.1e33	
B1830-08	-8.45	4.50	147	5.8e35	2.3e33	
J1913+0904	9.07	3.00	147	1.6e35	1.4e33	100 K
B0540+23	23.48	1.56	253	4.1e34	1.4e33	now d et ected

Linden et al., 2017

Upcoming detections of TeV halos could points towards misaligned or faint pulsars

4. PWN Candidate : N 157B

- Located in the Large Magellanic Cloud
- Powered by the most energetic (4.9 10³⁸ erg/s) known pulsar PSR J0537-6910
- Detection in the TeV band (HESS Coll, 2015, Science)
- Detection in the GeV band : sum of PSR + PWN ? (Fermi Coll, 2016)
 - but no gamma-ray pulsation detected so far

85°00

40'

Right Ascension

20

84°00

20

DA 495 : an interesting case in the Cygnus region

- Gamma-ray emission seen by HAWC (2HWC J1953+294), VERITAS and Fermi (joint article, 2018) close to SNR G65.7+1.2
- Coincident PWN emission seen in radio and X-rays (Arzoumanian et al 2008)
- No pulsations from radio to gamma-rays but Fermi spectrum looks like a psrlike spectrum (misaligned ? old ?)

=> VERITAS and HAWC would detect the associated PWN

◇ 1WGA J1952.2+2925

TeV observations of PWNe

- Largest population of Galactic TeV sources (along with SNRs and composite SNRs)
- Many of the still unidentified sources might be PWNe
- Preferentially :
 - either young: associated to energetic pulsars
 - or relic : offset from their pulsar

More luminous than their X-ray counterpart

GeV observations of PWNe

in the rising edge of the IC component

Larger than their TeV counterpart (cooling)

wrt bright powering pulsars

• Difficult to detect:

Quite young (<10 kyr)

electron population)

Associated to TeV sources

Fermi Coll, 2013

two

Summary

Detection of GeV & TeV gamma-ray PWNe :

- in the TeV range, PWN is the most numerous of identified sources in the Galactic plane
- a leptonic (IC scattering) origin for the high energy component of the spectrum is favored in each case
- Vela X is the first case where the injection of 2 leptonic components is suggested by multiwavelength data – but puzzling results to be understood
- HESS J1825-137 is the archetype of evolved PWN, in which diffusion can be put in evidence but not the only responsible for the large offset from the pulsar
- TeV halos detected by HAWC are an interesting case to probe the source of positron excess and find new pulsars

TeV astronomy has opened a new observational window for the study of PWNe, giving a more direct view of the accelerated particle population

The future in the TeV range

Back-up

CHERENKOV TELESCOPE ARRAY

CHERENKOV TELESCOPE ARRAY

70 x 4 m Ø Small Size Telescopes (SST) (South only)

Compared to current telescopes

- 5 to 20 x better sensitivity
- over 4 decades coverage in energy
- much larger field of view
- better angular resolution
- up to 400 x increased survey speed

SW(G)SO

The future in the GeV range

