HYDRODYNAMIC SIMULATIONS OF SUPERNOVA REMNANTS: DUST DESTRUCTION BY THE REVERSE SHOCK

Franziska Schmidt (she/her), F. Kirchschlager, M. J. Barlow, E. Fogerty, A. Bevan, F. Priestley

Supernova Remnants II

Chania, Greece | June 5, 2019

THE SNDUST PROJECT

Theme 1:

Measuring dust ejecta mass from observations

Theme 2:

Modelling of dust (destruction) in SNRs

Antonia Bevan

Roger Wesson

llse De Looze

Florian Kirchschlager Maria Niculescu- Felix Priestley Duvaz

All group members have brought posters to present their work so please do check those out! :)

© Nasa | Cas A | HST, Spitzer, Chandra

PREVIOUS DUST DESTRUCTION MODELLING

Typical setups

- Analytical density profiles
- Shock-ejecta (smooth/clumpy) interactions

Numerical studies¹ predict SNR dust survival rates anywhere between

0 and 99% but:

Simplified physics

- Passive non-interacting tracers
- No grain-grain collisions
- Initial conditions

¹e.g. Nozawa et al., 2007 (0-80%), Bianchi & Schneider, 2007 (2-20%), Nath et al., 2008 (80-99%), Silvia et al., 2010 (0-70%), Biscaro & Cherchneff, 2016 (6-98%), Boccio et al., 2016 (1-8%), and Micelotta et al., 2016 (12-16%)

THE 'CLOUD CRUSHING' MODEL

We simulate the conditions in the SNR using the hydrodynamic code AstroBEAR (Carroll-Nellenback et al., 2013) and the 'Cloud Crushing' model (Woodward, 1976).

 We sort the dust grains into N grain size bins

- We sort the dust grains into N grain size bins
- Each bin is added as a timedependent quantity to our HD simulations

dusty fields

- We sort the dust grains into N grain size bins
- Each bin is added as a timedependent quantity to our HD simulations
- Modified advection routines move the dust from cell to cell

inter-cell transport

- We sort the dust grains into N grain size bins
- Each bin is added as a timedependent quantity to our HD simulations
- Modified advection routines move the dust from cell to cell
- Source terms shuffle grains between bins (dust destruction & creation)

inter-bin transport

MODEL FEATURES

Hydrodynamic Simulations

- · Cooling
- · AMR

Dust physics

- Carbon and/or Silicate dust
- Grain charging
- Grain size distribution tracking
- Drag (gas and plasma)
- **Sputtering** (thermal & kinetic)
- Grain-grain collisions

<u>RESULTS</u>

DUST SURVIVAL RATES IN CAS A

INITIAL CONDITIONS

Ambient Medium

$$n_{\rm am} = 1 \,{\rm cm}^3$$
 $T = 10^4 \,{\rm K}$

Gas Cloud

 $n_{cl} = \chi \cdot n_{am}$ $\chi \in [100, 1000]$ $T = 10^2 \text{ K}$ $R_{cl} = 10^{16} \text{ cm}$

Shock

 $v_{sh} = 1600 \text{ km/s}$

Dust

$$\Delta_{gd} = 10$$

SPUTTERING & GRAIN-GRAIN COLLISIONS

We find that the inclusion of grain-grain collisions facilitates dust destruction by turning large grains into smaller grains which are more easily sputtered.

INITIAL DUST GRAIN SIZE DISTRIBUTIONS

Kirchschlager et al., 2019, submitted

Large grains and broad distributions result in the highest survival rates if we consider sputtering only.

INITIAL DUST GRAIN SIZE DISTRIBUTIONS

Kirchschlager et al., 2019, submitted

Survival rates change significantly if we consider grain-grain collisions due to the **interplay between collisions** and **sputtering**.

CLUMP-TO-AMBIENT-MEDIUM GAS DENSITY RATIO (C)

Kirchschlager et al., 2019, submitted

Depending on the initial clump-to-ambient-medium gas density ratio we find **survival rates** up to **30%** for carbon dust.

Kirchschlager et al., 2019, submitted

Depending on the initial clump-to-ambient-medium gas density ratio we find **survival rates** up to **40%** for silicate dust.

PAPERBOATS

An external dust processing code for HD simulations.

For more information please see the **poster** & have a chat with **Florian** and keep an eye out for **Kirchschlager et al., 2019** (submitted)!

CONCLUSIONS

Summary

- We use hydrodynamics simulations and dust processing routines to model dust destruction in SNRs
- Grain-grain collisions facilitate dust destruction by sputtering and should not be neglected!
- Depending on grain species, grain size distribution and clump-toambient-medium gas density ratio we find survival rates up to 40%.

Future Work

- **3D** simulations (DiRAC!)
- MHD simulations