

Rings of Metal-Rich Ejecta in Puppis A: Hints of a SN Interaction in a Binary?

Parviz Ghavamian (Towson University), Ivo Seitenzahl (UNSW Canberra), M. A. Dopita (ANU), Frédéric Vogt (ESO), Ashley Ruiter (UNSW), Janette Suherli (ESO)

M. A. Dopita (1946-2018)

Puppis A is Nested Within the Vela SNR

Ha [O III]

Vela: D = 250 pc (Cha et al. 1995) ROSAT HRI (Aschenbach 1995)

Puppis A is a Middle-Aged SNR

Metal-Rich ejecta (v ~ - 1600 km s⁻¹) (Katsuda et al. 2010)

Bright Eastern Cloud (CSM'ISM interaction) neutron star (CCO) J0822-4300 (v ~ 1600 km s⁻¹) (Becker & Winkler 2012)

> (Katsuda et al. 2010) (XMM/Chandra) 0.5 - 0.7 keV (Ο VII+OVIII Kα) 0.7 - 1.2 keV (Ne Kα) 1.2 - 5.0 keV

- Age ~ 3700 yrs (optical; Winkler & Kirshner 1988) 4400 yrs (X-rays)
- Strong interaction w/H I and CO clouds on eastern side (Dubner 1988; Reynoso et al 1995; Blair et al. 1995)
- R ~ 25' (~ 16 pc assuming D = 2.2 kpc)
- Si-rich (Hwang et al. 2008) and O/Ne/Mg-rich X-ray ejecta (Katsuda et al. 2008; 2010)
- Progenitor mass ~ 25 M_☉ inferred from abundance ratios (Katsuda et al. 2010)

Ha [O III]

WiFeS Fields in Puppis A

29 Fields observed (2×1800 s per field)

- B3000 (blue channel) + R3000 (red channel)
- Coverage 3500-9500 Å
- ▶ 100 km s⁻¹ resolution
- Surface brightness limit
 ~ 10⁻¹⁷ ergs cm⁻² s⁻¹ arcsec⁻²
- 10 nights (2016/2017)

WiFeS Fields in Puppis A

29 Fields observed (2×1800 s per field)

- B3000 (blue channel) + R3000 (red channel)
- Coverage 3500-9500 Å
- 100 km s⁻¹ resolution
- Surface brightness limit
 ~ 10⁻¹⁷ ergs cm⁻² s⁻¹ arcsec⁻²
- 10 nights (2016/2017)

Stepping Through the Red Channel Datacube of the Swirl

Stepping Through the Red Channel Datacube of the Swirl

Background Subraction is Tricky for Some Lines

SKY

Background/ejecta line blending is a challenge in the Swirl data:

- Some ejecta $\mathbf{H}\alpha$ (v_r ~-780 km s⁻¹) blueshifted to background [N II] 6548
- Some ejecta [N II] 6583 ($v_r \sim -1350 \text{ km s}^{-1}$) blueshifted to background [N II] 6548

... this necessitates careful background subtraction in many locations

Automated line-profile fitting to 1065 spectra ٠

[N II] Radial Velocities of the Swirl from WiFeS

[S II] Radial Velocities of the Swirl from WiFeS

dot radii \propto line FWHM

[O III] Radial Velocities of the Swirl from WiFeS

Why the Rings Are So Unusual

- Their velocities seem <u>quantized</u>. Are they even associated with Puppis A? Expansion speeds, central location in Puppis A suggest yes
- Swirl shows only blue shifted emission, consistent with a binary explosion picture (secondary located between us and the primary during SN)
- Dynamical timescale of knots: typical radiatively shocked clump ~ 10^{17} cm (limited by seeing), gives survival time τ ~ 100-150 yrs

... Implies: what we're seeing has been recently shocked!

 Rings similar in abundances to FMFs in Cas A (Fesen et al. 1987), though probably slower than the main body of ejecta

Nearly 70% of all Massive Star Systems are Multiple! Numerical Simulation of a 10 M_{\odot} Binary Interaction

One Possible Scenario: A Massive Binary System

Conclusions

• A conical ejecta pattern may produce slow lateral expansion of rings if they are approaching us

(... may be why **Winkler et al (1989)** get such a short dynamical age for rings (~ 800 yrs), so may make 2nd supernova unnecessary)

 Assuming v ~ 1350 km/s for outer N-rich ring, t = 3700 - 4400 year lifetime of the SNR gives a Swirl distance ~ v t = 5 - 6 pc from center of Puppis A (assuming *undecelerated* ejecta)

... This is well inside Puppis A ($R \sim 16 \text{ pc}$)

- <u>Weak H emission</u> within the rings and O-rich ejecta suggests a star that lost most of its H mass before the explosion, and maybe some mixing between layers (SN Type IIb/L: Chevalier 2005) (SN 1993J-type)
- Pre-SN wind explanation for Swirl? (how to get v ~ 1350 km s⁻¹?)
- Could the H have been donated to secondary star?
- Faint Ca, Ar, Ni, He also detected in WiFeS data of Swirl: ongoing analysis
- Proper motions for the ring complex must be measured

Optical/X-Ray Comparison of Swirl

