

Type la supernova remnant tomography

Ivo Seitenzahl

UNSW Canberra main collaborators for this work: P Ghavamian JM Laming FPA Vogt

Chania, Greece 5 June 2019

University of New South Wales Canberra at the Australian Defence Force Academy

(THE STORE

1112

Fiona Panther's latest paper SN1991bg-like SNe la

PASA, accepted for publication 4 June 2019

SN1991bg-like supernovae are associated with old stellar populations

Fiona H. Panther^{1,2,3}^{*}, Ivo R. Seitenzahl^{1,2}, Ashley J. Ruiter^{1,2,3}, Roland M. Crocker², Chris Lidman^{2,3}, Ella Xi Wang², Brad E. Tucker^{2,4,5} and Brent Groves^{2,4}.

¹School of Science, UNSW Canberra, Australian Defence Force Academy, Canberra 2612, Australia

²The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, Canberra, ACT 2611, Australia.

³ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO)

⁴The ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

⁵National Centre for the Public Awareness of Science, Australian National University, Canberra, ACT 2611, Australia.

Fiona Panther's latest paper SN1991bg-like SNe la

(a) Fitted spectrum of SN2000ej host

Fiona Panther's latest paper SN1991bg-like SNe la

context

e.g., delayed detonations pure turbulent deflagrations

e.g., delayed detonations pure turbulent deflagrations

e.g., violent mergers He double-detonations

M_{primary} ≈ 1.4 solar masses

e.g., delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.

e.g., delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- M_{primary} ≈ 0.8 1.1 solar masses

e.g., delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- M_{primary} ≈ 0.8 —1.1 solar masses
- ignition occurs as

e.g., delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- M_{primary} ≈ 0.8 —1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation

e.g., delayed detonations pure turbulent deflagrations

- M_{primary} ≈ 1.4 solar masses
- ignition of deflagration by pycnonuclear fusion of ¹²C at high dens.
- M_{primary} ≈ 0.8 —1.1 solar masses
- ignition occurs as
 - violent accretion stream triggers detonation
 - ★ He-layer detonates

Spectral comparison inconclusive

Spectral comparison inconclusive

Spectral comparison inconclusive

supernova remnant tomography with coronal lines in the shocked ejecta

Coronal lines

Voulgaris et al. 2012, Solar Physics, 278, 187

Coronal lines

Voulgaris et al. 2012, Solar Physics, 278, 187

http://www.cielaustral.com/galerie/photo95.htm

http://www.cielaustral.com/galerie/photo95.htm

MUSE on UT4 "Yepun" Archival data from PI Morlino and PI Leibundgut

SNR 0519-69.0 R: X-ray, G: Fe XIV, B:Ha

SNR 0519-69.0 R: X-ray, G: Fe XIV, B:Ha

SNR 0519-69.0 R: X-ray, G: Fe XIV, B:Ha

-69°01'50"

SNR 0509-67.5 R: X-ray, G: Fe XIV, B:Ha

SNR 0509-67.5 R: X-ray, G: Fe XIV, B:Ha

SNR 0509-67.5 R: X-ray, G: Fe XIV, B:Ha

N103B R: X-ray, G: Fe XIV, B:Ha

N103B R: X-ray, G: Fe XIV, B:Ha

Constraining the models with SNR evolution Leahy & Williams, ascl:1703.006

Blast-wave shock electron temperature: 7.266e+07 K Reverse shock electron temperature: 5.061e+08 K Blast-wave shock radius: 3.436 pc Reverse shock radius: 2.684 pc Blast-wave shock velocity: 6193 km/s

Reverse shock velocity: 4469 km/s

Phase transition times: ED to ST: 431.2 yr ST to PDS: 2.516e+04 yr PDS to merger: 2.055e+06 yr

Also [Fe XV] 7062.1

[S XII] 7613.1 (red) [Fe IX] 8236.8 (blue)

Dec (J2000)

BLASPHEMER models

BLASt Propagation in Highly EMitting EnviRonment by Martin Laming

BLASPHEMER models

BLASt Propagation in Highly EMitting EnviRonment by Martin Laming

Shock velocities time-dependent Leahy & Williams, ascl:1703.006

Shock velocities time-dependent Leahy & Williams, ascl:1703.006

SNR tomography has the potential to probe the timeevolution history of the RS

Final thoughts

Final thoughts

- Broad coronal lines in ejecta behind RS in three young Type
 - Ia SNRs in the LMC: **NEW DIAGNOSTIC**

- Broad coronal lines in ejecta behind RS in three young Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives direct handle on reverse shock speed

- Broad coronal lines in ejecta behind RS in three young Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives direct handle on reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models

- Broad coronal lines in ejecta behind RS in three young Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives direct handle on reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models
 - → (mass, ambient density, explosion energy)

- Broad coronal lines in ejecta behind RS in three young Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives direct handle on reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models
 - (mass, ambient density, explosion energy)
 - 0509-67.5 (1991T-like) best matched by 1.0 Msun

(Seitenzahl, Ghavamian, Laming & Vogt, PRL?)

- Broad coronal lines in ejecta behind RS in three young Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives direct handle on reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models
 - → (mass, ambient density, explosion energy)
 - 0509-67.5 (1991T-like) best matched by 1.0 Msun (Seitenzahl, Ghavamian, Laming & Vogt, PRL?)
- Further coronal lines allow for supernova tomography

- Broad coronal lines in ejecta behind RS in three young Type Ia SNRs in the LMC: NEW DIAGNOSTIC
- Gives direct handle on reverse shock speed
- If ages are known, then we can constrain allowed explosion parameters via SNR evolution models
 - → (mass, ambient density, explosion energy)
 - 0509-67.5 (1991T-like) best matched by 1.0 Msun (Seitenzahl, Ghavamian, Laming & Vogt, PRL?)
- Further coronal lines allow for supernova tomography
- ISSI proposal "SNR tomography with JWST", only 12 pax :-(