

X-Ray and Gamma-Ray Emission from CCSNe Comparison of 3D Neutrino-driven Explosions With SN 1987A

S3.1

Roughly first few hundred days

Photons from ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}$

Early hard X-ray emission constrains progenitor models

Chandrasekhar Mass Deflagrations as a Model for Type lax Supernovae

Florian Lach

Zentrum für Astronomie (ZAH), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg

S3.3

Physics of nonrelativistic perpendicular shocks of young supernova remnants S4.4 Artem Bohdan, DESY.

Shock structure

The structure is defined by shock reflected ions, Buneman and Weibel instabilities are excited.

Magnetic field in the downstream

Magnetic field is strongly amplified, up to 27 times. Predicted by RH cond. ~ 4

Production of nonthermal electrons

Mainly produced via <u>magnetic reconnection</u> and <u>second-order Fermi acceleration</u> process, not Buneman instability

Synchrotron radiation in Cas A: the non-linear connection S4.6

INSTITUTE

Vladimír Domček, Jacco Vink, Maria Arias & Ping Zhou

A systematic study on **escaping of cosmic rays** from SNR shocks through observations of **thermal X-ray plasmas**

No. S4.16

Hiromasa Suzuki¹,

Aya Bamba¹, Hirokazu Odaka¹, Ryo Yamazaki², Hiroya Yamaguchi³, Yutaka Ohira¹ 1: The University of Tokyo; 2: Aoyama Gakuin University, 3: ISAS/JAXA

- Cosmic-ray escape from SNR shocks
 - Detections of soft
 GeV emission from old SNRs
 - = Direct evidence for proton acceleration. (e.g. Abdo et al. 2010)
 - What timescale do protons escape and become cosmic rays ?

Combining GeV analysis (-> proton escape) and X-ray analysis on thermal plasma (-> time evolution of SNR), we could estimate the escape timescale, and it was consistent with theoretical prediction.

QUASI-PARALLEL COLLISIONLESS SHOCK (RE)FORMATION AND PARTICLE S4.19 ACCELERATION BY (NON)RESONANT MICRO-INSTABILITIES

VLADIMIR ZEKOVIĆ & BOJAN ARBUTINA | Department of Astronomy, Faculty of Mathematics, University of Belgrade, Serbia

LINEAR THEORY Two cold, magnetized, counter-streaming plasmas excite the RESONANT micro-instabilities.

KINETIC SIMULATIONS

These modes TRIGGER the shock FORMATION.

The typical compression ratio of $\sim 4 ->$ consequence of a highly resonant micro-physical process.

The (NON-)RESONANT modes REFORM the shock by the MAGNETIC REFLECTIONs of the upstream flow.

The MAGNETIC STRUCTURE ITSELF (without E_0 !) provides an ONE-STEP THERMALIZATION of particles at the shock overshoot region.

 μ -DSA mechanism –> DSA on the scales of a particle gyro-radius.

It provides the energization of ions (no SDA!), and also the acceleration of electrons.

For transversley scattered ions and electrons, spiral-like trajectories in particle phase spectra are due to a very efficient acceleration by μ -DSA!

Studying the radiative recombination continua in the X-ray spectra of pure ejecta plasma

E. Greco^(1,2,3), J. Vink^(3,4), M. Miceli^(1,2), V. Domcek^(3,4), P. Zhou^(3,5), S. Orlando⁽²⁾, G.Peres^(1,2), F. Bocchino⁽²⁾ ⁽¹⁾Università di Palermo, Dip. Di Fisica e Chimica,; ⁽²⁾INAF-Osservatorio Astronomico di Palermo; ⁽³⁾Anton Pannekoek Institut, University of Amsterdam; ⁽⁴⁾GRAPPA, University of Amsterdam, ⁽⁵⁾School of Astronomy and Space Science, Nanjing University

S5.6: NIR MOS of the Outer Ejecta Knots in Cas A

Yong-Hyun Lee, Bon-Chul Koo and Jae-Joon Lee

S5.7 Inferring the location and mass of dust in Cassiopeia A from comparison of Optical [OIII] 5007Å and Infrared [OIII] 52µm line profiles

Revisiting G21.5-0.9's X-Ray Spectral Breakin NuSTAR DataSoichiro Hattori (<u>S6.5</u>)

Rapid X-Ray Variations of the Geminga Pulsar Wind Nebula Jongsu Lee : Department of Space Science & Geology, S6.6 Chungnam National University, Korea

Epoch 8a 2013-09-16 $\frac{N}{5 \text{ arcsee}}$

 ← We can see the compact extended feature at perpendicular proper motion of Geminga. The variability of this feature occurred at a speed of ~0.8c.

→ In Epochs 7 and 8, the southern tail is found to be significantly twisted with respect to the contours as an S-shaped structure. The twisting of the southern tail occurred at a speed of ~0.2c.

← We have discovered an extended X-ray feature, apparently associated with millisecond pulsar PSR J1911-1114. → We investigated the spectral hardening. The confidence contours are shown clearly shows the significant spectral variation along the southern outer tail.

E-mail : skyljs1234@gmail.com

Radio and Submillimetre Constraints on the Pulsar-Driven Supernova Model

S6.8

10

Conor Omand et al.

10

10¹

Observer Time after Explosion (years)

10¹

Observer Time after Explosion (years)

O CEASAR: The Optical CAtalogue of Extragalactic UNIVERSITÉ 🤇 SupernovA Remnants S7.7 Comprendre l'Univers UNIVERSITY Understanding the Universe OF MANITOBA I. Moumen^{1,2}, C. Robert¹, D. Devost², L. Rousseau-Nepton^{2,3}, D. Patnaude⁴, S. Safi-Harb⁵, R.P. Martin³, HARVARD-SMITHSONIAN L. Drissen¹, and T. Martin¹ CENTER FOR ASTROPHYSICS 1 Université Laval, Québec (QC), Canada | 2 Canada-France-Hawaii Telescope, Waimea (HI), USA | 3 University of Hawaii at Hilo, Hilo (HI), USA | 4 Harvard-Smithsonian Center for Astrophysics, Boston (MA), USA | 5 University of Manitoba, Winnipeg (MB), Canada SN1 filter SN2 filter SN3 filter SNB-C 1050 3 SNR-C 159 ò erg SNR-C159 **SNR-C 159** 5 15 10-10 Flux [SII]6716,6731 0.5 Optical CAtalog of Extragalactic Ó 50 100 150 200 250 300 Distance [pc] SupernovA Remnants 3762 Wavelength [Å] [SII]/Ha ≥ 0.4 (129) 5 S/N ≥ [NII]6583 S/N ≥ 3 Sabbadin Plo Hβ **BPT Diagrams** [OIII]500 NGC 3344 is a part of SIGNALS survey. 129 SNR candidates were identified in (42)(29)(16)(42)this galaxy. Less likely SNRs **Probable SNRs** Confirmed SNRs (42) (45)(42) See our poster # S1.14

Systematic survey of supernova remnants from deep radio images: Magellanic Clouds and M31

Sumit K. Sarbadhicary, Laura Chomiuk, Jessica Maldonado (MSU), Preshant Jagannathan, Danny Huizenga, Carles Badenes (MSU), Adam Leroy (Ohio St.)

