

GRavitation AstroParticle Physics Amsterdam

The strange behavior of the reverse shock Oi Cassiopeia A

Jacco Vink University of Amsterdam

Chandra observations of Cassiopeia A

- First light image: 1999
- •1Ms (VLP): 2004 (PI: U. Hwang)
- Since 2008: monitoring of Cas A (PI: Patnaude)
- •Work presented here:
 - •Expansion measurements of Cas A in 4.2-6 keV band (continuum)
 - •Collaborators: JV, D. Castro, R. Fesen, M. Laming,...
 - Work in progress

Velocity needed for X-ray synchrotron

•Synchrotron loss-time

$$\tau_{\rm syn} = \frac{E}{dE/dt} = 12.5 \left(\frac{E}{100 \text{ TeV}}\right)^{-1} \left(\frac{B_{\rm eff}}{100 \mu \rm G}\right)^{-2} \rm yr.$$

•Diffusive acceleration time (depends on diffusion coeff. D, compression X)

$$\tau_{\rm acc} \approx 1.83 \frac{D_2}{V_{\rm s}^2} \frac{3\chi^2}{\chi - 1} = 124\eta B_{-4}^{-1} \Big(\frac{V_{\rm s}}{5000 \,\,{\rm km \, s}^{-1}}\Big)^{-2} \Big(\frac{E}{100 \,\,{\rm TeV}}\Big) \frac{\chi_4^2}{\chi_4 - \frac{1}{4}} \,\,{\rm yr},$$

•Equating gives expected cut-off for loss-limited case

$$h\nu_{\rm cut-off} = 1.4\eta^{-1} \left(\frac{\chi_4 - \frac{1}{4}}{\chi_4^2}\right) \left(\frac{V_s}{5000 \,\,\mathrm{km\,s^{-1}}}\right)^2 \,\mathrm{keV}$$

•Photon energy cut-off independent of B, but depends on Vs and B-turbulence!!

Non-thermal emission

•Cas A unique (?) among young SNRs:

- •forward and reverse shock emit X-ray synchrotron radiation
- •reverse shock synchrotron confined to central and western part
- •gives outline of reverse shock in west
- not all continuum is synchrotron (yellow)

The location of the reverse shock

Helder& Vink 2008

Arias et al 2018

•Radio absorption (LOFAR, talk by Maria Arias):

reverse shock larger than indicated by X-ray synchrotron

- West: forward and reverse shock close together
- •What is different in the West?

Cas A in the radio

•Ring likely also electrons accelerated by reverse shock!

Previous expansion results

Anderson & Rudnick '95:

- Radio: deviations from radial outflow
- Expansion slow: 800 yr time scale
- Hindsight: knots assoc. with rev. shock

Sato+ 2018:

"Optical flow model" X-rays: Inward motions West & SE + isolated regions measurements

7

Changes 2004-2018

Expansion measurements method

- •Reference ("model") image: 2004 image (850 ks)
- Stretch image/optimise using C-statistic (Poisson maximum likelihood)
 Extension of codes used in Vink+ 1998, Vink 2008
- Select arbitrary regions
- •New:
 - Fit multiple images simultaneously
 - Improves statistics (expansion ages with 1 yr errors!)
 - •Here: obs. 1999, (2004), 2009, 2012, 2013, 2014, 2015, 2017, 2018
- Difficulty: registering the images (no point source but NS)
- •Solution (for now): fit dx,dy for each image, for rev. shock/forw. region

2004-2018: mean expansion corrected

- •Red: original 2018 image
- •Green: 2004 image expanded to 2018 (mean expansion)
- Motion: green/red aligned filaments
- Changes in brightness: isolated colours

Fit regions

Forward shock region

Reverse shock region

- •General mask: minimum #counts in 2004 map
- Forward shock: annulus (two knots removed)
- Reverse shock: broad annulus with Rin < Rlofar < Rout (< Rin,forw)
- Central region left out: unclear what it is/projection effects
- Angular division in 30 degrees sectors

Mask/30° sectors

Fitting result

Implied shock velocities

•Shock in ejecta frame: use shifted center of rev. shock

• $R_{rs,west}$ > $R_{rs,east}$ \rightarrow free expansion in West is higher!

- •In the Western region: rev. shock in ejecta frame: ~8000 km/s!!
- Forward shock in West also fast

Comparison with models

Comparison with models

•Numerical/semi-analytical models: V_{rev}> 0!

- •Simple stellar wind CSM + uniform ejecta + power law is incorrect!
- •Western region encountering dense CSM?
 - No: forward shock is fast/no CO evidence
 - Perhaps: past encounter dense CSM, but evidence destroyed
 - Perhaps: low density ejecta behind the jet \rightarrow triggering strong rev. sh.
- If simple models are incorrect: what model to focus on?
 - density high @ 2.6 pc: long wind duration: t=R/v_w≈250 (v_w/10km/s)kyr
 - extensive low density cavity/dense shells ruled out (Schure+ 2008)

Problem with Molecular Cloud

Sato+ 2018

- Western jet looks disturbed
- •But:
 - •no enhanced thermal emission
 - •no evidence for interaction from CO data: Zhou+ 2018 (see poster)

Caveats

Technical/method:

Lack of point sources:

•difficult to disentangle non-uniform expansion from registration errors

- Selection of optimum regions
- •Filaments brighten and decay: not all changes due to motions
- •Method assumes radial expansion: may not be correct!
 - •Use more advanced methods? (optical flow? what about statistics?)

Physics:

• Difference synchrotron vs bremsstrahlung

•synchrotron: follows filaments = reverse shock velocity

•bremsstrahlung: follow plasma \neq reverse shock velocity:

$$V_{\text{plasma}} = \frac{3}{4} V_{\text{rev,sh}} + \frac{1}{4} \frac{R_{\text{rev,sh}}}{t}$$
$$V_{\text{rev,sh}} = 0 \rightarrow V_{\text{plasma}} = \frac{1}{4} \frac{R_{\text{rev,sh}}}{t} \approx 1800 \text{ km s}^{-1}$$

Summary/conclusions

- •Measurements of $V_{sh,forw}/V_{sh,rev}$ in 30° sectors
- •Results:
 - •Reverse shock moves backward in South and West (200°<PA<300°)
 - In West shock velocity (ejecta frame): close to 8000 km/s
 - •Rest: $V_{rev,sh} \approx 2000$ 4000 km/s outward
 - Not reproduced by semi-analytical/numerical models
- •Fast rev. shock (>3000 8000 km/s): explains X-ray synchrotron at rev. shock!
- •Outward shock in East and North: different from optical (Fesen talk)
- Possible solutions:
 - Measure plasma (not shock) velocity? → why no X-ray synchrotron in East?
 - Projection effects
 - •Optically active shocks have different properties than X-ray active shocks?

Optical image

Optical evolution

Back up slides

Results

Table 1: Expansion of Cas A, forward shock.

Table 2: Expansion of Cas A, reverse shock.

PA	Exp. rate	Exp. age	m	PA	Exp. rate	Exp. age	m
$(^{\circ})$	$(\% \ {\rm yr}^{-1})$	(yr)		$(^{\circ})$	$(\% \ {\rm yr}^{-1})$	(yr)	
15	$0.19504 \ {}^{+0.00001}_{-0.00000}$	$512.70 \stackrel{+0.01}{_{-0.02}}$	0.65	15	$0.1951 \ {}^{+0.0000}_{-0.0000}$	$512.58 \ ^{+0.01}_{-0.00}$	0.65
45	$0.22366 \stackrel{+0.00009}{_{-0.00037}}$	$447.11 \begin{array}{c} +0.75 \\ -0.18 \end{array}$	0.74	45	$0.1620 \ ^{+0.0005}_{-0.0011}$	$617.13 \ ^{+4.11}_{-2.06}$	0.54
75	$0.21380 \stackrel{+0.00041}{_{-0.00021}}$	$467.73 \stackrel{+0.46}{_{-0.89}}$	0.71	75	$0.1056 \stackrel{+0.0008}{_{-0.0018}}$	$947.39 \ ^{+16.75}_{-7.24}$	0.35
105	$0.21985 \stackrel{+0.00061}{-0.00083}$	$454.86 \begin{array}{c} +1.72 \\ -1.26 \end{array}$	0.73	105	$0.1633 \ ^{+0.0017}_{-0.0006}$	$612.55 \ ^{+2.08}_{-6.31}$	0.54
135	$0.28122 \begin{array}{c} +0.00025 \\ -0.00016 \end{array}$	$355.59 \ \substack{+0.20 \\ -0.32}$	0.93	135	$0.1911 \stackrel{+0.0010}{_{-0.0009}}$	$523.19 \stackrel{+2.60}{_{-2.72}}$	0.63
165	$0.22691 \stackrel{+0.00018}{_{-0.00020}}$	$440.71 \stackrel{+0.39}{_{-0.35}}$	0.75	165	$0.1256 \ ^{+0.0014}_{-0.0005}$	$796.31 \ \substack{+3.05 \\ -8.97}$	0.42
195	$0.20667 \stackrel{+0.00045}{_{-0.00017}}$	$483.86 \stackrel{+0.41}{_{-1.05}}$	0.69	195	$0.1094 {}^{+0.0006}_{-0.0013}$	$914.04 \ ^{+10.72}_{-5.09}$	0.36
225	$0.20133 \ {}^{+0.00046}_{-0.00024}$	$496.71 \stackrel{+0.58}{_{-1.14}}$	0.67	225	$-0.0149 \ {}^{+0.0004}_{-0.0004}$	$-6715.01 \ ^{+188.88}_{-171.56}$	-0.05
255	$0.21249 \stackrel{+ 0.00014}{- 0.00019}$	$470.62 \stackrel{+0.41}{_{-0.32}}$	0.71	255	$-0.0222 \begin{array}{c} +0.0008 \\ -0.0010 \end{array}$	$-4501.06 \begin{array}{c} +194.24 \\ -160.95 \end{array}$	-0.07
285	$0.23732 \ {}^{+0.00010}_{-0.00012}$	$421.37 \stackrel{+0.20}{_{-0.18}}$	0.79	285	$-0.0590 \ {}^{+0.0004}_{-0.0006}$	$-1694.37 \stackrel{+15.78}{_{-11.53}}$	-0.20
315	$0.22049 \stackrel{+ 0.000\bar{2}\bar{5}}{_{- 0.00015}}$	$453.53 \begin{array}{c} +0.32 \\ -0.51 \end{array}$	0.73	315	$0.0854 \ {}^{+0.0010}_{-0.0006}$	$1171.04 \ ^{+8.97}_{-13.10}$	0.28
345	$0.18177 \begin{array}{c} +0.00015 \\ -0.00012 \end{array}$	$550.13 \ {}^{+0.37}_{-0.45}$	0.60	345	$0.1265 \ {}^{+0.0004}_{-0.0005}$	$790.53 \begin{array}{c} +3.28 \\ -2.50 \end{array}$	0.42
Average:	0.2184 ± 0.0248	457.92 ± 52.1	0.73	Average:	0.0973 ± 0.0854	1027.56 ± 901.7	0.32

• Forward shock: consistent with earlier results

(Vink+ '98, Koralesky+ '98, Delaney+ '04, Patnaude+ '08, Sato+ '18,...)

- Reverse shock:
 - large excursions
 - $<m>=0.32 -> <V_{rev sh}>\approx1880 km/s$

Changes from 1999-2018

Fitting result

