Supernova remnants II — an odyssey in space after stellar death — @Chania, Crete Session 4: Shock Physics and Particle Acceleration in SNRs June, 4th, 2019

# **Constraint on Diffusion Coefficient at SNR Shock Using Nonthermal X-ray and Gamma-ray Observations**

Naomi Tsuji, Yasunobu Uchiyama, Dmitry Khangulyan (Rikkyo University), and Felix Aharonian (DIAS, MPI-K)



## **CR diffusion**

#### **Diffusion coefficient**

$$D(E) = D_* \left(\frac{E}{E_c}\right)^{\alpha} \text{ cm}^2/\text{s}$$

• α: energy dependence; diffusion type



"TeV halo" around Geminga (PSR) (HAWC Coll. 2017)

Dec. [deg]

- size ~ radius of 20 pc
- Electron diffusion A 23
  - a=1/3
  - D\*~4.5x10<sup>27</sup>
  - $E_c=100 \text{ TeV}$



4 -3 -2 -1 0 1 2 3 4 5 Significance [sigmas]

#### <This talk> Acceleration site: SNR shock

- 1. Bohm diffusion ( $\alpha$ =1)
- 2. Arbitrary diffusion ( $\alpha$ =0, 1/3, 1)
- 3. Gamma-ray observations

### Bohm diffusion

## **Diffusion around SNR shock**

#### **Bohm diffusion**

diffusion coefficient:  $D = \eta *(gyro radius)*c$   $\eta=1$  (Bohm limit) "efficient acc."  $\eta \gg 1$  "inefficient acc."

#### <u>Model</u>

Zirakashvili & Aharonian 2007 (ZA07) Electron: synch. cooling + Bohm diffusion X-ray: synchrotron  $\epsilon_0-v_{sh}$  relation:

$$\varepsilon_0 = 0.93 \left(\frac{v_{\rm sh}}{3900 \text{ km/s}}\right)^2 \eta^{-1} \text{ keV}$$

#### **Observation**

e.g.) RX J1713.7–3946 NW Cutoff energy: 1.1 keV Shock speed: ~3900 km/s (NT & Uchiyama 16) →Bohm factor: **η~1 (Bohm limit)** 



## **Bohm diffusion: young SNR**

Systematical analysis of young Galactic SNRs:

 G1.9+0.3, Cassiopeia A, Kepler's SNR, Tycho's SNR, G330.+1.0, SN1006, RX J1713.7–3946, RCW 86, Vela Jr., HESSJ 1731 (, SN 1987A)



### Acceleration efficiency: Kepler's SNR

- Kepler's SNR (SN 1604)
- Type Ia; shell
- Spectral fitting:
  - Energy: 0.5-7 keV w/ Chandra
  - Model: wabs\*(vnei + ZA07)
- Shock speed: Katsuda+ 08, Vink 08



RGB image w/ Chandra

(0.5-1.2 keV / 1.2-2 keV / 2-7 keV)

### Acceleration efficiency: RX J1713-NW (NT+ 2019)

- RX J1713.7-3946 (~SN 393)
- Type II; shell
- Spectral fitting:
  - Energy: 0.5–7 keV w/ Chandra+NuSTAR
  - Model: wabs\* ZA07
- Shock speed: NT & Uchiyama 16





Fast-speed regions: (a) and (d)

• 
$$\eta$$
~1  $\rightarrow$  acc. site

Slow-speed regions: (b), (c) and (e)

- NOT described with theoretical curve
- $\rightarrow$  NOT acc. site; enhanced B-field?

# Acceleration efficiency: G1.9

- G1.9+0.3
- The youngest SNR in our Galaxy
- Spectral fitting:
  - Energy: 0.5–50 keV w/ Chandra+NuSTAR
  - Model: wabs\* ZA07
- Shock speed: Borkowski+ 17





•η~2–3 (reverse shock)

Cas A (Sato+ 18) η~1 at forward shock η~3–8 at reflection shock

### Acceleration efficiency: young SNRs (NT+ in prep.)



### Acceleration efficiency: young SNRs (NT+ in prep.)



### Arbitrary diffusion

## **Arbitrary diffusion**

#### **Diffusion coefficient**

$$D(E) = D_* \left(\frac{E}{E_c}\right)^{\alpha} \text{ cm}^2/\text{s}$$

Bohm diffusion (a=1)  
$$D_{\text{Bohm}}(E) = \frac{c}{3q} \eta B^{-1} E$$

- Validity of Bohm diffusion is not confirmed
- CR itself produces B-field turbulence, which determines CR diffusion
- Open issue: what kind of turbulence (p-parameter)?



## **Arbitrary diffusion: Model (electron)**

#### **Diffusion coefficient**



## **Arbitrary diffusion: Model (X-ray)**

#### **Diffusion coefficient**



## Arbitrary diffusion: Observation (RX J1713)

#### **Observation (X-ray)**

- RX J1713-NW
- 0.5–20 keV (Chandra+NuSTAR)
- Shock speed: ~3900 km/s (NT & Uchiyama 16)
- B ~ 15µG (HESS Coll. 2018) X-ray energy (keV)  $10^{-10}$  $10^{-1}$  $10^{2}$ 10<sup>28</sup> Constant s)) Chandra+NuSTAR Kolmogorov E<sup>2</sup>dN/dE (erg / (cm2 **Bohm** D (cm2/s) D(100 TeV)~3e26 cm<sup>2</sup>/s  $10^{-11}$  $10^{-12}$ 1/e energy (X)  $\beta = 2.0$ (X) β=1.3 (X)  $\beta = 1.0$ 07 c2down: (r\_=1.14 keV  $10^{25}_{10^{13}}$ all: (B, co, a, b, c)=(1e+00.0.08.0.25.0.37.4.5  $10^{15}$  $10^{-1}$  $10^{14}$  $10^{1}$  $10^{2}$ Electron energy Energy (keV)
  - Deeper observations in hard X-ray would determine α-parameter
  - Characteristic value: D(100 TeV)~3e26 cm<sup>2</sup>/s
  - Only Bohm diffusion is consistent with "D(E) > Bohm limit"

#### **Constrained diffusion coefficient**

$$D(E) = D_* \left(\frac{E}{E_c}\right)^{\alpha} \text{ cm}^2/\text{s}$$

# **Arbitrary diffusion: Observation (G1.9)**

### **Observation (X-ray)**

- G1.9-whole
- 0.5–40 keV (Chandra+NuSTAR)
- Shock speed: ~13000 km/s (Borkowski+ 17)
- Assume B =50 µG

#### **Constrained diffusion coefficient**

$$D(E) = D_* \left(\frac{E}{E_c}\right)^{\alpha} \text{ cm}^2/\text{s}$$



- Characteristic value: D(50 TeV)~5e26 cm<sup>2</sup>/s
- All diffusion types are consistent with "D(E) > Bohm limit"

### Gamma-ray

# Arbitrary diffusion: γ-ray spectrum

#### Model (electron)

- SNR shock
- Arbitrary diffusion type ( $\alpha$ =0, 1/3, 1)
- Synchrotron cooling
- α=0, 1/3 → Blasi 2010
- $\alpha=1$   $\rightarrow$  Zirakashvili & Aharonian 2007

### Model (gamma-ray)

Inverse Compton scattering (in KN regime using naima)

#### **Observation**

e.g.) RCW86-whole (w/ H.E.S.S.) Cutoff energy (electron): 26 TeV Shock speed: ~3000 km/s (Yamaguchi+ 16) B-field: ~10 uG (Ajello+ 16) →Bohm factor: η~8



## **Bohm diffusion: X/γ-ray**

Shell-type SNRs: ✓ hard GeV gamma-ray ✓ strong TeV gamma-ray emission (w/ H.E.S.S.)

- SN 1006 (B~24 µG)
- RXJ1713 (B~15 µG)
- RCW86 (B~10 µG)
- VelaJr (B~12 µG)
- HESS J1731 (B~25 µG)
- Leptonic / Hadronic?
- B-field: by X/γ flux ratio (leptonic scenario)



- Gamma-ray spectrum can be used to estimate  $\eta$  (if leptonic)
- $\eta_{Y} > \eta_{X}$ ; different regions, B-field, hadronic contribution...
  - (gamma-ray from the entire remnant and X-ray from the rim)
- constrained with spatially resolved gamma-ray observations (CTA)

# **Arbitrary diffusion: X/y-ray**

#### e.g.) RCW86-whole/NE

- TeV gamma-ray spectrum: whole, HESS 18
- X-ray spectrum: NE
- B = 10 µG

#### e.g.) VelaJr-whole

- TeV gamma-ray spectrum: HESS 18
- X-ray spectrum: Suzaku-XIS (Fukuyama in prep.)



- RCW 86: cutoff with X-ray > cutoff with  $\gamma$ -ray
- Vela Jr.: Kolmogorov diffusion? (B=12 uG; Tanaka+ 11)
- Spatially resolved gamma-ray observations (CTA) would determine α

## Summary

- Estimated the diffusion coefficient of SNR shock in SN 1006, RX J1713.7– 3946, RCW86, Vela Jr., and HESSJ 1731 (using X/γ-ray observations) and in G1.9, Cassiopeia A, Kepler, Tycho, G330, and SN 1987A (using X-ray observations only).
- Bohm diffusion
- Revealed the more efficient acceleration for the older SNR.
- Bohm factor (η) obtained with gamma-ray spectrum is larger than that with X-ray.
- Arbitrary diffusion
- Obtained the spectral model of synchrotron and IC radiation from loss (synch. cooling)-limited electrons in arbitrary diffusion regime (Zirakashvili & Aharonian 2007; Blasi 2010)
- Constrained on the diffusion coefficient for electrons around the maximum energy (sub 100 TeV), irrespective of diffusion regime (α-parameter).
- Future work
- Deeper observations with NuSTAR and/or CTA can determine, with higher accuracy, the cutoff shape of  $X/\gamma$ -ray spectra and the diffusion regime.