

Interplay between Physics and Geometry in Balmer filaments

Rino Bandiera INAF - Arcetri Astrophysical Obs. + Giovanni Morlino, Sladjana Knezević, John Raymond

The background Optical spectra dominated by Balmer lines. ⇒ collisionless shock moving in a partially neutral medium (Chevalier & Raymond 1978)

Peculiar Ha line profile: broad+narrow component \Rightarrow Kinetically hot neutrals as an effect of charge - exchange processes.

Transition region, until complete ionization

A powerful diagnostic tool Need for more detailed modelizations (e.g. Smith et al. 1991, Ghavamian et al. 2001, Heng & McCray 2007, van Adelsberg et al. 2008, Blasi et al. 2012, etc.) Main observables: I_b/I_n, W

Diagnostics on: $V_{sh}, \beta = T_e/T_i$ etc.

(Heng 2010)

Structure of transition region

Further information could be acquired (ultimately, on the CR efficiency) BUT

-Need for observations with high-spatial resolution L_{ref}~ 5-10 10¹⁵ cm (n₀/0.1 cm⁻³)⁻¹ ~ 0.17"-0.33" (D/2 kpc)⁻¹ (n₀/0.1 cm⁻³)⁻¹
- Need for more detailed models of this transition region

(e.g. van Adelsberg et al. 2008, Blasi et al. 2012)

A kinetic treatment

- (Blasi, Morlino & the team in Arcetri) - Neutrals do not behave like a gas \Rightarrow Vlasov egs, deviations from Maxwellian
- Charge-exchange process (for H) \Rightarrow more generations (k) of neutrals - For k=1 or higher, they can cross the

shock back ('neutral return flux')

"Geometrical" effects (Bandiera, Morlino, Knez čević & Raymond 2019, MN 483, 1537)

We are not observing, perfectly edge-on, a perfectly plane-parallel shock transition.

Effects of curvature / multiple emitting layers: i. on the surface brightness profile ii. on the profile of I_b/I_n iii. on the width of the broad comp. iv. on its spectral offset

The N-W edge of sn 1006

HST observation (Raymond et al. 2007)

Observation with VIMOS-IFU @ VLT (Nikolic' et al. 2013) Lower spatial resolution but spectral info

Combined analysis of HST & VLT data

Constant curvature geometries

Convex case

Concave case

Distinctive profiles both for I_n+I_b and I_b/I_n

Filament structure: a closer view

Outer limb

Fit to the outer limb

Convex constant curvat. $h_{ref} \cong 0.69'' n_0 \cong 0.033 \text{ cm}^{-3}$ (< previously published)

Intensity ripples, shorter length scales.

Convex curvat. + ripples (very tiny ones)

Geometry of the inner filament

But concave - constant curvature \Rightarrow excess in projected upstream.

1. Very small curvature radius OR

2. Multiple tangency points, along the LOS (Raymond et al. 2007)

 h_{ref} can be estimated from intensity drop on inner side: $h_{ref} \cong 0.24'' \ n_0 \cong 0.095 \ cm^{-3}$

Multiple tangency points How likely are they? Simulated maps:

0

Select bright filaments Selection effect favours multiple tangency points!

Measured broad-line width

Slightly larger in the projected upstream. Likely effect of combination of thermal spread and bulk motions (at least 2 layers).

Velocity shift of broad component

Fits to the line shapes V offsets: $\sigma \approx 100$ km/s Even number of tangency points. Face-on surf.brightness must be inhomogenous. Fluctuations of at least ≈ 50 % over large ($\approx 10''$) scales.

(Nikolic' et al. 2013)

Analysis of the structure of the transition region, but only when spatially resolved.

Only nearby SNRs in a low density medium.

But no such limitation for:

- Observed widths of the broad component
- Velocity offsets of the broad component

An almost perfect test case \Rightarrow

SNR 0509 - 67.5 (in the LMC)

Radius ≈ 14.8 " ≈ 3.6 pc Age: 400 ± 120 yr

(Rest et al. 2005)

Pure Balmer emiss. HST image \Rightarrow (from Hovey et al. 2015)

Adding spectral information

MUSE : Integral field spectrograph @ ESO - VLT

Wide-field modeSpatial sampling: 0.2 arcsecSpectral resol.100 km s⁻¹ \bigcirc H_aField of view:1 x 1 arcmin²

(Obs. P.I. Morlino) PRELIMINARY RESULTS

Stellar subtraction

Narrow-line map

Broad-line map (4 times deeper cuts) b

Broad-line map before stellar subtraction

Even further, locations of brightest stars have masked out before proceeding with spectral analysis

Always negative velocity offset along the North-East edge

Just a geometrical effect? Neutral density gradient along LOS + limited spatial resolution.

Predictions:

- 1. Velocity offset must increase towards the center.
- 2. Measured velocity width must increase towards the center.

Are they measurable?

A simple geometrical model

Spherical, thin-layer model (r_{sh})

- Thermal velocity dispersion (σ_{vel})

- Radial bulk velocity (V_{bulk})

 Neutral density gradients (logarithmic) on the sky plane (grad_x) along the LOS (grad_z)

Fitting the profiles

"Preliminary" best fit: (models convoluted with PSF) $r_{sh} \simeq 15.4 \text{ arcsec}$ $\sigma_{vel} \simeq 1500 \text{ km s}^{-1}$ (i.e. $W \simeq 3500 \text{ km s}^{-1}$) $V_{\text{bulk}} \simeq 3000 \text{ km s}^{-1} (\sim \text{half of } V_{\text{sh}})$ $grad_{x} \cong +6.5$ r_{sh}^{-1} (i.e. outwards) $qrad_{z} \simeq -0.85 r_{sh}^{-1}$ (i.e. towards us)

Preliminary results: -Strong local gradient -Low thermal width -Low bulk velocity (effect of σ_{ch-ex} ?)

Summary

- Analysis of the structure of transition zone. Geometry may affect the observed:
- I_b+I_n profile
- $-I_b/I_n$ profile
- W of the broad-line component
- V offset of this component

The last 2 quantities can be effectively used also when the shock transition is not resolved.