Heidelberg Institute for Theoretical Studies

A sub-Chandrasekhar mass white dwarf as possible progenitor for a thermonuclear explosion

Sabrina Gronow with F. Roepke, C. Collins, S. Sim

ARI at the ZAH, Heidelberg University Heidelberg Institute for Theoretical Studies

June 4, 2019

Introduction

- Latest results indicate detonations of sub-M_{Ch} WDs as promising SN Ia progenitor (e.g. Sim+ 2010, Goldstein+ 2018)
- Isolated sub-M_{Ch} WD stable
 → binary system
- Investigate double detonation scenario (e.g. Nomoto 1982)

HITS

- Assume: Detonation at base of He shell (Glasner+ 2018)
 - Accretion of He from companion
 - Thermal instability develops
 - Detonation

- Assume: Detonation at base of He shell (Glasner+ 2018)
- Three possible outcomes:
 - 1st directly triggers 2nd detonation at surface of core: edge-lit mechanism (e.g. Livne & Glasner 1990, Sim+ 2012)

- Assume: Detonation at base of He shell (Glasner+ 2018)
- Three possible outcomes:
 - 1st directly triggers 2nd detonation at surface of core: edge-lit mechanism (e.g. Livne & Glasner 1990, Sim+ 2012)
 - Shock and detonation waves initiated by 1st detonation converge off-center in core and trigger 2nd detonation: converging shock mechanism (e.g. Fink+ 2007, 2010; Moll & Woosley 2013)

- Assume: Detonation at base of He shell (Glasner+ 2018)
- Three possible outcomes:
 - 1st directly triggers 2nd detonation at surface of core: edge-lit mechanism (e.g. Livne & Glasner 1990, Sim+ 2012)
 - Shock and detonation waves initiated by 1st detonation converge off-center in core and trigger 2nd detonation: converging shock mechanism (e.g. Fink+ 2007, 2010; Moll & Woosley 2013)
 - No 2nd detonation: strictly no double detonation (e.g. Bildsten+ 2007)

Approach

- Open questions:
 - He ignition (Glasner+ 2018)
 - Details of He detonation (e.g. Kromer+ 2010, Townsley+ 2012,2019)
 - C ignition
 (Röpke+ 2007, Seitenzahl+ 2009)

Approach

- Open questions:
 - He ignition (Glasner+ 2018)
 - Details of He detonation
 (e.g. Kromer+ 2010, Townsley+ 2012,2019)
 - C ignition
 (Röpke+ 2007, Seitenzahl+ 2009)
- Not completely answered in previous multi-D simulations
- Follow up with full 3D simulations

Approach

- AREPO code (Springel 2010)
- Moving unstructured mesh
- Second order finite volume scheme
- Explicit refinement and derefinement
- Nucleosynthesis consistent with hydrodynamics (Pakmor+ 2013)

Voronoi mesh (Springel 2010)

Model setup

- Here: sub- M_{Ch} CO white dwarf with He shell

Model setup

- Here: sub- M_{Ch} CO white dwarf with He shell

Model setup

- Here: sub- M_{Ch} CO white dwarf with He shell
- 1st detonation is artificially ignited
- Follow evolution for $100 \, \mathrm{s}$

Nucleosynthesis yields

- Old simulations: burning products of He detonation have strong imprint on synthetic observables
 - Not observed
- Burning products depend on modeling of He burning
- Compare results to previous work:
 - Post-processing with large nuclear network
 - Obtain detailed chemical yields
- Results in expected range: shell detonation core detonation We Fink+ 2010 Fink + 2010We $[M_{\odot}]$ $[M_{\odot}]$ $[M_{\odot}]$ $[M_{\odot}]$ 2.6×10^{-2} 3.3×10^{-2} ⁴He 12C 4.8×10^{-4} 2.7×10^{-3} 6.6×10^{-4} 3.4×10^{-3} 4.9×10^{-2} 8.0×10^{-2} ⁴⁴Ti ^{16}O 1.8×10^{-2} 1.7×10^{-3} ⁵⁶Ni ⁵⁶Ni 5.5×10^{-1} 5.7×10^{-1} 2.3×10^{-2} 5.3×10^{-3} 3.7×10^{-1} 3.7×10^{-1} IME IME

Observables

Observables

НІТЯ

Summary

- Double detonation scenario includes *four* different detonation mechanisms
 - convergence of He detonation waves strong enough
- Mechanism matches SN Ia observables as good as Fink+ 2010
- Spectra show necessity of multi-D simulations

Thank you!

