Hydrodynamical models of CCSNe and Shock Breakout

Melina Cecilia Bersten

I A L P CONICET

Core-Collapse Supernovae

- End of massive stars ($M_0 \gtrsim 8M_{\odot}$) Stellar evolution test
- Which type of progenitor corresponds to each type of SN?
- How do massive stars lose their envelopes?
- Isolated stars or interacting binary systems?

Core-Collapse Supernovae

- End of massive stars ($M_0 \gtrsim 8M_{\odot}$) Stellar evolution test
- Which type of progenitor corresponds to each type of SN?
- How do massive stars lose their envelopes?
- Isolated stars or interacting binary systems?

Progenitor Stars

- Archival pre-explosion imaging
- Environmental and metallicity studies
- SN rates
- Mass-loss rates from radio & X-rays
- Spectropolarimetry
- Flash spectroscopy
- Light-curve and spectrum modeling

Progenitor Stars

- High-resolution, deep archival imaging (HST) (\leq 30 Mpc) \approx 30 detections + 38 upper limits (Van Dyk, Smartt, etc.)
 - Most are RSG SNe II
 - A few YSG SNe IIb
 - One detections for SN Ib
 - One candidate for SN Ic
 - LBV SNe IIn
 - BSG SN 1987A
 - Deficiency of progenitors with log L/L $_{\odot} \gtrsim 5.1 \Longrightarrow$ M_{ZAMS} $\lesssim 16-18 M_{\odot}$?

Progenitor Stars

- Hydrodynamic modeling: LC + expansion velocities
- Progenitor mass, radius, explosion energy, ⁵⁶Ni mass (Kepler, Stella, Utrobin, Bersten+, SNEC,...)

Hydrodynamical Models

- Different time scales for core and envelope => ejection of the envelope treated independently of core collapse
- Numerical integration of the hydro equations + radiative transfer
 1-D code with flux-limited radiation + gray transfer for γ -rays (Bersten+11)
- Pre-SN structures: stellar evolution and parametric models

H-rich progenitors

Type II Supernovae

- Most common type of stellar explosion
- Good distance indicators: EPM, SEAM, and SCM
- RSG structure with H-rich envelope
- Pre-SN imaging + stellar evolution models: M_{ZAMS} : 8–16 M_{\odot} (Smartt+15)
- Hydro modeling favors high mass range (Utrobin & Chugai)

Type II Supernovae

- Most common type of stellar explosion
- Good distance indicators: EPM, SEAM, and SCM
- RSG structure with H-rich envelope
- No systematic differences between mass estimations

Type II Supernovae

- Possible good metallicity indicators (Dessart+13, Anderson+16)
- Evidence of some CSM arround in most SNe II (Moriya+11,González-Gaitán+15, Nagy & Vinko+16, Morozova+16, Yaron+17,...)

SBO delay due to CSM

H-poor progenitors

Stripped-envelope SNe

■ Low ejecta masses \approx 1-4 M_☉ from LC of SE-SN sample (Drout+11, Cano+13, ...) \implies binarity

Stripped-envelope SNe

- Low ejecta masses \approx 1-4 M_☉ from LC of SE-SN sample (Drout+11, Taddia+18, ...) ⇒ binarity
- SNe IIb: four YSG confirmed. Three possible companion detections
- SN Ib: one confirmed progenitor (iPTF13bvn; Eldrige+Maund 16, Folatelli+16)
- SN Ic: one progenitor candidate (SN 2017ein; Van Dyk+18)

Folatelli, MB+14

Early Emission

- Important clues on the progenitor structure, mixing process, presence of possible CSM, interaction with a possible companion
- Strong dependence on progenitor radius
- Models for compact progenitors show initial plateau (see also Dessart+11)

Early Emission

- Important clues on the progenitor structure, mixing process, presence of possible CSM, interaction with a possible companion
- A handful of Type IIb observed during cooling phase: e.g. 93J, 11dh, ...
- A low-density extended H-rich envelope is required for the LC morphology (Bersten+12, Nakar&Piro'14)

Early Emission

- Important clues on the progenitor structure, mixing process, presence of possible CSM, interaction with a possible companion
- For lb/lc several observations per night are necessary to well constrained the radius

Bersten+14

Shock Breakout (SBO)

- A luminous burst in UV/X-ray: shock-wave emerges on the stellar surface ($\tau < v_{\rm sock}/c$)
- Produces an emission peak in the optical
- SBO emission \neq shock cooling emission

Early Discovery

Increasing number of surveys focused on earlier-time observations (iPTF, KISS, HITS, HSC-SHOOT, ZTF, LSST, ULTRASAT)

Early Discovery

Increasing number of surveys focused on earlier-time observations (iPTF, KISS, HITS, HSC-SHOOT, ZTF, LSST, ULTRASAT)

Early Discovery

Increasing number of surveys focused on earlier-time observations (iPTF, KISS, HITS, HSC-SHOOT, ZTF, LSST, ULTRASAT)

Supernova 2016gkg

Discovered on Sept. 20th 2016 by amateur Víctor Buso

The "Observatorio Busoniano" in Rosario

Buso with his 40cm Newtonian

Supernova 2016gkg

The SN appears during Víctor's observations

NGC 613

Supernova 2016gkg

The SN appears during Víctor's observations

NGC 613

SN IIb 2016gkg

- No sign in 40 images (in \approx 20 min). SN became visible 45 min later
- Unprecedented time sampling of the initial rise at a rate of 43 mag/day

SN IIb 2016gkg

- No sign in 40 images (in \approx 20 min). SN became visible 45 min later
- Unprecedented time sampling of the initial rise at a rate of 43 mag/day

SBO rise time

The lowest luminosity and the fastest rise ever observed (in optical) a different physical origin for the initial rise

SBO rise time

The lowest luminosity and the fastest rise ever observed (in optical) a different physical origin for the initial rise

- First-time, self-consistent model for the whole SN evolution
- Fast initial rise and brightness naturally reproduced

Physical origin of Víctor's data: SBO or post shock-cooling (PSC)?

- The rise to the SBO peak is significantly faster than that of the (PSC)
- No physical parameter can reconcile the slopes

- Fast initial rise and brightness only compatible with the SBO
- No physical parameter can reconcile the SBO and cooling slopes

- Our model shows slightly higher SBO slope
- Possible solution presence of some circumstellar material (CSM)

CCSNe - p.21/23

Progenitor of SN 2016gkg

- HST pre-SN images \implies YSG star with $R \approx 250 R_{\odot}$ at SN position
- Binary calculations: progenitor is a H-deficient star with \approx 4.5 M_{\odot} and $R \approx 200 R_{\odot}$

see also Tartaglia+17, Arcavi+17 & Kilpatrick+17

Summary

- Light-curve modeling a useful tool to derive physical properties of SN progenitors and thus to test stellar evolution models
- SNe II: masses derived from hydro models are not systematically larger than those from pre-explosion imaging
- SESNe seem to come predominantly from binaries. Where are the binary companions? How to find them?
- Early emission highly dependent on the external stellar structure. Hydrodynamical models required to reproduce the early emission
- SN16gkg model explains for the first time three distinct phases of IIb
- SBO in SN16gkg may suggest low-density CSM (not affecting the cooling phase!)
- SBO detections require minute/hour cadence