Max-Planck-Institut für Astrophysik

SFB 1258 Neutrinos Dark Matter Messengers

Supernova Remnants II An Odyssey in Space After Stellar Death 3–8 June 2019, Chania, Crete, Greece

3D Core-Collapse Supernova Modeling and Applications to **CAS A and other SN Remnants**

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world Hans-Thomas Janka MPI for Astrophysics

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

The Theme

CO

COCO2CASA: Goals

Connecting Supernova Progenitors with Supernova Remnants

- 3D modeling of latest burning stages of pre-collapse stars
- 3D modeling of SN explosion mechanism
- 3D modeling of evolution from SN explosion to SN-remnant phase

Dedicated targets:

- Explanation of morphological and chemical properties of young, nearby, well studied SN remnants, e.g., Crab, Cas A, SN 1987A
- **Collecting indirect evidence for neutrino-driven explosion mechanism**

Contents

- **1.** Brief overview: Status of 3D core-collapse SN modeling
- 2. Pre-collapse progenitor asymmetries: Importance for SN explosions in 3D
- 3. Cas A: Chemical asymmetries and the 'jets"
- 4. SN 1987A: Mixing and 3D morphology
- 5. Crab: Was SN 1054 an 'electron-capture SN" (ECSN) ?

Shock revival

n, p

Proto-neutron star

0

Ni

n, p, α

3D asymmetries from the onset of the explosion determine asymmetry of the SN ejecta and SN remnant. Modeling of the explosion has to be performed in 3D consistently from pre-collapse stage to SNR phase !

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !

3D Core-Collapse SN Explosion Models

Oak Ridge (Lentz+ ApJL 2015): 15 M_{sun} nonrotating progenitor (Woosley & Heger 2007)

Tokyo/Fukuoka (Takiwaki+ ApJ 2014): 11.2 M_{sun} nonrotating progenitor (Woosley et al. 2002)

Caltech/NCSU/LSU/Perimeter (Roberts+ ApJ 2016; Ott+ ApJL 2018): 27 M_{sun} nonrotating progenitor (Woosley et al. 2002), 15, 20, 40 M_{sun} nonrotating progenitors (Woosley & Heger 2007)

Princeton (Vartanyan+ MNRAS 2019a, Burrows+ MNRAS 2019): 9, 10, 11, 12, 13, 16 M_{sun} nonrot. progenitors (Woosley & Heger 2007, Sukhbold+2016)

3D Core-Collapse SN Explosion Models

Garching/QUB/Monash (Melson+ ApJL 2015a,b; Müller 2016; Janka+ ARNPS 2016, Müller+ MNRAS 2017, Summa+ ApJ 2018):

9.6, 20 M_{sun} nonrotating progenitors (Heger 2012; Woosley & Heger 2007)

18 M_{sun} nonrotating progenitor (Heger 2015)

15 M_{sun} rotating progenitor (Heger, Woosley & Spuit 2005, modified rotation)

9.0 M_{sun} nonrotating progenitor (Woosley & Heger 2015)

~19.0 M_{sun} nonrotating progenitor (Sukhbold, Woosley, Heger 2018)

Monash/QUB (Müller+ MNRAS 2018, Müller+MNRAS 2019): z9.6, s11.8, z12, s12.5 M_{sun} nonrotating progenitors (Heger 2012), he2,8, he3.0, he3.5 M_{sun} He binary stars, ultrastripped SN progenitors (Tauris 2017)

Status of Neutrino-driven Mechanism in 3D Supernova Models

- 3D modeling has reached mature stage.
 3D differs from 2D in many aspects, explosions more difficult than in 2D.
- $M \ll 12-13 M_{sun}$ stars explode by neutrino-driven mechanism in 3D.
- First neutrino-driven 3D explosions of 15-40 M_{sun} progenitors (with rotation, 3D progenitor perturbations, or slightly modified neutrino opacities).
- Explosion energy can take several seconds to saturate !
- **Progenitors are 1D**, but composition-shell structure and initial progenitor-core asymmetries can affect onset of explosion.
- 3D simulations still need higher resolution for convergence.
- Full multi-D neutrino transport versus "ray-by-ray" approximation.
- Uncertain/missing physics?
 Dense-matter nuclear and neutrino physics? Neutrino flavor oscillations?

Pre-collapse 3D Asymmetries in Progenitors

With Naveen Yadav (postdoc), Tobias Melson (ex-postdoc) and Bernhard Müller and Alex Heger (Monash University); arXiv:1905.04378

3D Core-Collapse SN Progenitor Model 18 M_{sun} (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell burning. During accelerating core contraction a quadrupolar (I=2) mode develops with convective Mach number of about 0.1.

B. Müller, Viallet, Heger, & THJ, ApJ 833, 124 (2016)

x (x10^3 km)

x (x10^3 km)

3D Core-Collapse SN Explosion Model 18 M_{sun} (solar-metallicity) progenitor (Heger 2015)

3D simulation of last 5 minutes of O-shell burning. During accelerating core contraction a quadrupolar (I=2) mode develops with convective Mach number of about 0.1.

This fosters strong postshock convection and could thus reduces the criticial neutrino luminosity for explosion.

B. Müller, PASA 33, 48 (2016); Müller, Melson, Heger & THJ, MNRAS 472, 491 (2017)

3D Simulations of Convective Oxygen Burning in ~19 M Pre-collapse Star

Initial (1D) conditions 7 minutes prior to core collapse.

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M_{sun}

Convectively Ledoux-stable (BV frequency < 0) and Ledoux-unstable regions (BV frequency > 0) regions.

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M

Net energy generation rate (nuclear burning minus neutrino cooling).

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M

Flash of Ne+O burning creates large-scale asymmetries in density, velocity, Si/Ne composition

3D Explosion of ~19 M Star after Neon-oxygen-shell Merger

SN-remnant Cassiopeia A

CASA

X-ray (CHANDRA, green-blue); optical (HST, yellow); IR (SST, red)

Chemical Asymmetries in CAS A Remnant

Red: Ar, Ne, and O (optical) Purple: Iron (X-ray)

Image: Robert Fesen and Dan Milisavljevic, using iron data from DeLaney et al. (2010)

Chemical Asymmetries in CAS A Remnant

Reverse-shock heated iron is visible in three big "fingers"

-> More: see talk by <u>Annop</u> <u>Wongwathanarat</u> on Wednesday

Wongwathanarat et al., ApJ 842 (2017) 13

⁴⁴Ti Asymmetry in the CAS A Remnant

NuSTAR observations

Grefenstette et al., Nature 506 (2014) 340

Neutron Star Recoil and Nickel & 44Ti Distribution

Wongwathanarat et al., ApJ 842 (2017) 13

Grefenstette et al., Nature 506 (2014) 340

Neutron Star Recoil and Nickel & 44Ti Distribution

Wongwathanarat et al., ApJ 842 (2017) 13

Grefenstette et al., Nature 506 (2014) 340

Cas A: Gamma-Ray Line Profiles of 44Ti

CAS A Si-Ne-rich Wide-angle "Jets"

- Wide-angle features in NE and SW directions with up to 15,000 km/s expansion velocity.
- Rich in Si and Ne, but poor in iron.

Credit: NASA/CXC/GSFC/U.Hwang et al.

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M_{sun}

Flash of Ne+O burning mixes Si and Ne; distribution highly asymmetric in mass and velocity space

Sanduleak -69 202 Supernova 1987A 23. Februar 1987

Supernova 1987A (SN 1987A)

SN1987A Models: 3D Morphology

Wongwathanarat et al., A&A 577 (2015) A48 ; Utrobin et al., A&A 581 (2015) A40

New Single-star Models for SN1987A: Bolometric Light Curves from 3D Explosions

Hertzsprung-Russell Diagram for SN 1987A Progenitors.

Single Star Scenario

The total ⁵⁶Ni mass is scaled to fit the observed luminosity in the radioactive tail.

time (days)

150

Binary-star Models for SN1987A: Bolometric Light Curves from 3D Explosions

Hertzsprung-Russell Diagram for SN 1987A Progenitors

Binary Merger Scenario

SN 1987A: Gamma-Ray Line Profiles of ⁵⁶Co

Jerkstrand et al

SN 1987A: Gamma-Ray Line Profiles of ⁵⁶Co

NS in SN 1987A is likely to have fairly high kick towards us.

Wongwathanarat, Janka, Müller, A&A 552 (2013) A126

3D Geometry of SN1987A: Observations vs. Models

3D isosurfaces of iron and silicon ([Fell]+[Sil])

HST & VLT obs.: Larsson et al., ApJ 833 (2016) 147

3D model: Janka et al., arXiv:1705.01159

44Ti and 56Ni in SN Remnants Cassiopeia A: $M_{proq} \sim 17-20 M_{sun}$, $M_{ei} \sim 4 M_{sun}$, $E_{exp} \sim 2.3 \times 10^{51} \text{ erg}$, $v_{ns} \sim 500 \text{ km/s}$ M (⁵⁶Ni) ~ 0.1~0.2 M_{sun} M (⁴⁴Ti) = (1.25 \pm 0.3) 10⁻⁴ M_{sun} (NuSTAR; Grefenstette et al. 2014) M (44Ti) = $(1.37 \pm 0.19) 10^{-4} M_{sun}$ (INTEGRAL; Siegert et al. 2015) M (44Ti) = (1.3 \pm 0.4) 10⁻⁴ M_{sun} (INTEGRAL: Wang & Li 2016) **SN1987A**: $M_{prog} \sim 15-20 M_{sun}$, $M_{ei} \sim 15 M_{sun}$, $E_{exp} \sim 1.5 \; x \; 10^{51} \; erg$, $\; v_{ns} \sim 300 \; km/s$ $M (56Ni) = 0.071 M_{sun}$ M (44Ti) = (1.5 \pm 0.3) 10⁻⁴ M_{sun} (NuSTAR; Boggs et al. 2015) M (44Ti) = (1.5 \pm 0.5) 10⁻⁴ M_{sun} (lerkstrand et al. 2011)

CRAB Nebula with pulsar, remnant of Supernova 1054

CRAB (SN1054):

Low explosion energy and ejecta composition (He richness, low O, Fe abundances) are compatible with ONeMg core explosion

> (Nomoto et al., Nature, 1982; Hillebrandt, A&A, 1982)

ECSN properties:

Neutron Star Recoil in 2D and 3D ECSN Models

ECSN models: 40 2D runs 5 3D runs

with energies in [0.3, 1.6] x 10⁵⁰ erg

Hydrodynamical NS kicks only a few km/s; in 3D: < 3 km/s

Gessner & Janka, arXiv:1802.05274

Implications for CRAB SN Remnant

- CRAB pulsar: Proper motion of ~160 km/s
- This is NOT compatible with SN birth in ECSN explosion

Therefore:

- Either: CRAB was SN explosion of (low-mass) Fe-core progenitor and not an ECSN of ONeMg core progenitor
- Or: Pulsar kick by anisotropic neutrino emission instead of hydrodynamic mechanism!
- Also possible (?): Binary break-up in SN explosion
- Not possible: Electromagnetic recoil (Harrison-Tademaru)

Implications of Neutrino-driven Explosions in 3D Supernova Models

- Delayed neutrino-driven explosions work in 2D and 3D!
- "Details" of the physics in the core still need further studies.
 Can dense-matter effects be settled in near future?
- Multi-D models of neutrino-driven explosions are sufficiently mature to test them against observations.
- 3D geometry of neutrino-driven explosions seems to explain morphology of SNRs such as Cas A and SN 1987A.
 What are the Cas A 'jets'? How much Fe is unshocked in Cas A?
- Pulsar kick in CRAB is hardly compatible with origin in ECSN ! Do ECSNe exist?