Supernova Remnants II, Chania, June 2019

A meta analysis of CCSN ⁵⁶Ni masses Joe Anderson (ESO), A&A accepted

+ES+

Anderson19

A meta analysis of CCSN ⁵⁶Ni masses CCSN diversity

A meta analysis of CCSN ⁵⁶Ni masses Much diversity is observed in the core-collapse supernova family: 1) hydrogen-rich SNeII

Supernova Remnants II, Chania, June 2019

A meta analysis of CCSN ⁵⁶Ni masses Much diversity is observed in the core-collapse supernova family: 2) Stripped-Envelope events, SNeIIb, Ib, Ic, IcBL

How is this diversity is produced through different explosions of distinct progenitors following different evolutionary paths?

Pre-SN progenitor dependent on initial conditions:

- → ZAMS mass
- Presence of a close binary companion
- Progenitor metallicity
- Rotation

How is this diversity is produced through different explosions of distinct progenitors following different evolutionary paths?

Pre-SN progenitor dependent on initial conditions:

- → ZAMS mass
- Presence of a close binary companion
- Progenitor metallicity
- Rotation

That all affect progenitor through different mass-loss mechanisms:

- Binary mass stripping
- Steady winds
- → Eruptive winds

How is this diversity is produced through different explosions of distinct progenitors following different evolutionary paths?

Pre-SN progenitor dependent on initial conditions:

- → ZAMS mass
- Presence of a close binary companion
- Progenitor metallicity
- Rotation

That all affect progenitor through different mass-loss mechanisms:

- Binary mass stripping
- Steady winds
- → Eruptive winds

Pre-SN progenitors (with some density structure) then explode:

> Explosion energy

⁵⁶Ni production

Interaction with CSM

A meta analysis of CCSN ⁵⁶Ni masses Our(?) current understanding of the progenitors of CCSNe

van Dyk+18

Type II supernovae (SNell) Majority are RSGs with initial basses between 8 and 20Msun (RSG problem?). Evidence for dense CSM close to progenitor stars for many (majority?) of SNell

Stripped Envelope SNe (SE-SNe, IIb, Ib, Ic) A significant fraction (if not the vast majority) arise from <20Msun binary progenitors. Some evidence that SNeIc arise from more massive progenitors → therefore classic WR stars.</pre>

Progenitor mass range very similar for SNeII and SE-SNe?

All literature values found through ads search: Total of 253 CCSNe:

- 115 SNell
- 27 SNellb
- 33 SNelb
- 48 SNelc
- 32 SNelcBL

No preference for technique, all values complied/averaged. Observational uncertainties:

Bolometric corrections
Distance
Host Av
Explosion epochs

SNII = tail luminosity, SE-SNe = peak luminosity

A meta analysis of CCSN ⁵⁶Ni masses SNII ⁵⁶Ni estimates

Anderson+14

s₃ decline rate follows that predicted by ⁵⁶Co decay in majority of SNeII → implies full trapping of gamma-rays

A meta analysis of CCSN ⁵⁶Ni masses SE-SN ⁵⁶Ni estimates = **'Arnett's rule'**

Supernova Remnants II, Chania, June 2019

A meta analysis of CCSN ⁵⁶Ni masses Clear, statistically significant differences in ⁵⁶Ni masses between SNeII and SE-SNe

Anderson19

Clear, statistically significant differences in ⁵⁶Ni masses between SNeII and SE-SNe

- Highly significant statistical ⁵⁶Ni mass differences between SNII and all other CC (SE-SN) types
- Zero SE-SN values lower than 0.03Msun, while 52 (~50%) SNII lower than such values
- SE-SNe have some very high estimated values! Highest SNII = 0.36Msun, SNIIb = 0.28Msun; SNIb = 0.92Msun(!); SNIc = 0.84Msun; SNIcBL = 2.4Msun!!! (SNIa estimates are ~0.6Msun)

SN distribution (N)	Mean (M_{\odot})	Standard deviation (M_{\odot})	Median (M_{\odot})	Max (M_{\odot})	$Min(M_{\odot})$
SN II (115)	0.044	0.044	0.032	0.360	0.001
SE-SN (143)	0.293	0.295	0.184	2.400	0.030
SN IIb (27)	0.124	0.061	0.102	0.280	0.030
SN Ib (33)	0.199	0.146	0.163	0.920	0.030
SN Ic (48)	0.198	0.139	0.155	0.840	0.030
SN IcBL (32)	0.507	0.410	0.369	2.400	0.070

Anderson19

SE-SNe have estimated ⁵⁶Ni masses significantly in excess of any yields from neutrino-driven explosion models:

Ugliano+12; Pejcha&Thompson15; Sukhbold+16; Suwa+19

A meta analysis of CCSN ⁵⁶Ni masses Differences in progenitors? Or systematic observational/modelling errors in ⁵⁶Ni estimations?

If SNeII and SE-SNe arise from similar mass progenitors, then we may expect their ⁵⁶Ni yields to be similar...

 ⁵⁶Ni differences imply differences in core structure and explosion properties

SNII ⁵⁶Ni method appears robust. Is this the case for SE-SNe?

- How accurate is Arnett's rule?
- Can observational errors explain 56Ni differences?
- Are we missing dimmest SE-SNe?

A meta analysis of CCSN ⁵⁶Ni masses Alternative explanations

- SE-SNe are not produced through the neutrino driven mechanism?
- ⁵⁶Ni is not dominant power source at peak for SE-SNe?

A meta analysis of CCSN ⁵⁶Ni masses Alternative explanations

- SE-SNe are not produced through the neutrino driven mechanism?
- ⁵⁶Ni is not dominant power source at peak for SE-SNe?

SE-SNe do explode differently and from significantly different core structures than SNeII

Supernova Remnants II, Chania, June 2019

A meta analysis of CCSN ⁵⁶Ni masses Further analysis (Nicolas Meza) Khatami & Kasen (2019)

Meza&Anderson in prep.

Supernova Remnants II, Chania, June 2019

A meta analysis of CCSN ⁵⁶Ni masses Further analysis (Nicolas Meza) Dependence on rise time:

Meza&Anderson in prep.

A meta analysis of CCSN ⁵⁶Ni masses Further analysis (Nicolas Meza) Difference between peak and tail

Supernova Remnants II, Chania, June 2019

Time since estimated explosion

Meza&Anderson in prep.

- Current consensus is that SNeII and SE-SNe arise from very similar progenitor masses
- However, clear difference between literature ⁵⁶Ni masses
- SE-SN ⁵⁶Ni masses much larger than those predicted by neutrino-driven explosion models
 - Progenitors and explosions of SE-SNe are significantly different from SNeII?
 - ⁵⁶Ni masses for SE-SNe are significantly in error?

Specific ⁵⁶Ni values

SN1987A = 0.072Msun (much higher than median SNII, 87A-like all

<u>have large values).</u> SN1999em = 0.044 SN2005cs = 0.004 SN2013ej = 0.018

SN1993J = 0.112 SN2016gkg = 0.085

SN1984L = 0.645 SN2008D = 0.088 iPTF13bvn = 0.073

SN1994I = 0.075 SN2011bm = 0.657

SN1998bw = 0.583

