An Imaging and Spectroscopic Study of **RCW 103**

Authors: C. Braun, S. Safi-Harb, C. Fryer

1. 4
1.10
Contraction of the

Full SNR fit: VPSHOCK+APEC			
$n_{\rm H} (x 10^{22} {\rm cm}^{-2})$	1.05		
Hard VPSHOCK			
kT (keV)	0.56		
Mg	1.3		
Si	1.4		
S	1.0		
Fe = Ni	1.2		
$n_{e}t (x10^{11} \text{ cm}^{-3} \text{ s})$	6.1		
Soft APEC			
kT (keV)	0.19		

Main Results	
Age (D _{3.1} kyr)	0.88-4.4
$E_* (f_s^{-1/2} D_{3.1}^{5/2} erg)$	3.7x10 ⁴⁹ (< 2x10 ⁵⁰)
Progenitor Mass (N	1 _☉) 12–13

1 2 3 4 5 6 7 8 9

0.18 0.35 0.53 0.71 0.89 1.1 1.2 1.4 1.6

Fermi-LAT observations of the surprising SNR G150.3+4.5

J. Devin, M.-H. Grondin, J. Hewitt, M. Lemoine-Goumard (on behalf of the Fermi-LAT collaboration)

Mapping the Physical Properties of Supernova Remnants in our Galaxy

John A. Kypriotakis*, Andreas Zezas, Ioanna Leonidaki University of Crete, Greece / FORTH-IESL, Greece *ikypriot@physics.uoc.gr

Remnant	Filter	AB Magnitude	
	Hα+[N1]	10.868±0.075	
G65.8-0.5	[S ₁]	11.10±0.11	
	[O ₁₁₁]	12.36±0.20	
	Hα+[N1]	10.015±0.021	
G67.8+0.5	[SII]	10.469±0.055	
	[O _{III}]	11.124±0.086	
30'48'- 50'- 52'- 54'- 300'02' 00' 299'58' 56' 300'02' 00' 299'58' 56' 1000 1000 1000 1000			
50' -	- 800 - 50' - - 600 - 52' -	- 800 - 600	
54'-	- 400 - 54'- - 200	- 400	
L	' 56' 3 00°02	00' 299'58' 56' RA	

1. Observation

A 3D SITELLE Spectral datacube

4 million spectra in each datacube (350 nm - 900 nm)

3D Optical Spectroscopic Study of NGC 3344 with SITELLE: I. Identification and Confirmation of Supernova Remnants

I. Moumen^{1,2}, C. Robert¹, D. Devost², R.P. Martin³, L. Rousseau-Nepton^{2,3}, L. Drissen¹, T. Martin¹ and P. Amram⁴

1 Université Laval, Québec (QC), Canada | 2 Canada-France-Hawaii Telescope, Waimea (HI), USA | 3 University of Hawaii at Hilo, Hilo (HI), USA 4 Laboratoire d'Astrophysique de Marseille, Marseille, France

2. Background subtraction

Global background vs Local background

3. Automatic identification

- 1. Line ratio [SII]/Hα ≥ 0.4
- 2. S/N \geq 5 for H α and [SII]
- 3. The size \leq 120 pc;
- 4. The correlation coeff ≥ 0.5

4. Confirmation

42 Confirmed SNRs, 45 Probable SNRs, and 42 Less likely SNRs

5. Shocks

A metallicity ranging between LMC and 2solar Low shock velocity below 250 km/s

Structures of M33 Supernova Remnants Revealed by Broad-Band HST Images

Po-Sheng Ou (歐柏昇), You-Hua Chu (朱有花), Chris Lin (林鼎鈞)

X-ray bright SNRs in dense environments

Transients, Supernovae and high-amplitude variables in the HCV

- We used the HCV to identify all variable stars with amplitude >1 mag
- ~ 830 NEW multi filter variable stars
- 7 non-reported transients among them 3 candidate SN
- 4 non-reported variable AGN
- 3 non-reported QSOs

New Candidate SNe

New variable AGNs

Progenitor Mass Distribution for Core Collapse Supernova Remnants in M31 & M33

- What is the minimum progenitor mass for these stellar explosions?
- Is there a maximum progenitor mass?
- Or more generally, what is the progenitor mass distribution?

Mariangelly Díaz-Rodríguez md14u@my.fsu.edu

Goals:

- Understand the progenitor mass distribution of SNe
- Develop statistical tool to help constrain the progenitor masses of CCSNe

A Grid of Core Collapse Supernova Remnant Models Evolved from Massive Progenitors Key Takeaways:

-2

- 3 Grids of ~100 models each (Non-Rotating, Core-Rotating, Surface-Rotating)
 - Differences in Final Composition
 - Less obvious variation in SNEC
- Large variation in mass loss
 - Last 5e5yrs most important
- · Clear quantitative spectral differences in the remnant

Caveats

- Only one mass-loss prescription (Dutch wind)
 - Other wind prescriptions change mass loss, especially in last 5e5 yrs
 - No Episodic Mass Loss
- SNEC output needs to be verified against literature
- ChN output is still preliminary
 - Incomplete for the grids
 - No Cosmic Ray emission in final spectrum
 CENTER FOR ASTROPHY

ASTROPHYSICS HARVARD & SMITHSONIAN

Is There a Critical Metallicity of Mass Loss in Massive Star Evolution?

Po-Sheng Ou (歐柏昇), Ke-Jung Chen (陳科榮)

Constraining massive star activities in the final years through properties of supernovae and their progenitors Ryoma Ouchi, Keiichi Maeda

- The energy deposition into the envelope in the last few years might produce **the confined CSM**.
- → We have investigated the effect of the pre-SN energy deposition on the progenitor and SN.
- A constraint has been derived on the pre-SN energy injection rate to explain the usual SNe II.

Acoustic

Fuller 2017

S2. 15

X-ray Emission From Kepler's SNR

Spatial distributions of multiple physical parameters

Sun & Chen 2019, ApJ, 872, 45 Poster presentation by Lei Sun SNR II @ Crete, Greece

Distinct properties between CSM and ejecta

mechanism

The Signature of a Windy Radio Supernova Progenitor in a Binary System

Almog Yalinewich

