Circumstellar Interaction in Unusual Supernovae (SLSNe, FELTs)

Ken Nomoto Shing-Chi Leung Alexey Tolstov (Kavli IPMU, U. Tokyo) Sergei Blinnikov Elena Sorokina Petr Baklanov (ITEP; Moscow State U.)

Fast Evolving Luminous Transients (FELT) Fast Blue Optical Transients (FBOT)

K2/Kepler light curve of KSN 2018K

Electron Capture (EC) in 8-10 M_☉ Stars

Electron-degenerate O+Ne+Mg Core

- ²⁴Mg(e⁻,v)²⁴Na (e⁻,v)²⁴Ne
- ρ >4.0 × 10⁹gcm⁻³
- → collapse

(Nomoto 1984)

H-rich Envelope of Super-AGB Stars

- Thin He shell
 - → Thermal pulses of He shell burning (C, s-process synthesis)
 → 3rd Dredge-up of the He layer

- Extensive mass loss (C-dust ?)
 - Small mass H-rich envelope and dense Circumstellar Matter (dusty)

(Nomoto et al. 1972)

→ SN IIn ? II-L ?? II-pec ??

V-band light curve simulations (M $\sim 0.05 - 1.25 M_{\odot}$)

Light Curves of ECSNe with CSM Interaction

Super AGB H-rich Envelope + Circumstellar Matter

KSN 2015K multiband LC simulations

KSN 2015K V-band light curve simulations

Superluminous Supernovae (Progenitors, Mechanisms??)

Type I SLSNe: No Hydrogen

*Radioactive Decays (Core-Collapse SN Pair Instability SN)

*Magnetar

*Black Hole Accretion

*Circumstellar Interaction

Magnetar models for SLSN-I: CSM signature?

Observed Time (MJD)

Circumstellar Interaction model for SN 2010gX (Sorokina, KN+16)

Interaction Light Curves: Narrow & Wide

Pulsating O & Si Burning → CSM ?

Pulsational Pair-Instability (80-140 M_o)

Pair Instability Pulsations

Pre-Collapse Core and CSM after PPI

$\sim 80 - 140 \ M_{\odot}$ Stars

Pulsational Pair-Instability (PPI: Barkat+)

- → Pulsational Mass Ejection (Woosley, Marchant+, Leung-KN)
- ➔ Dense Circumstellar Matter

M(CSM: He, C, O) ~ $4 - 40 M_{\odot}$

Circumstellar Interaction ->

Type I Superluminous Supernovae ?

→ Collapse (BH formation):

M(BH) = 38 – 51 M_☉ if no-mass ejection (e.g., Leung-KN) (cf. Binary BH masses from GW) r-process in accretion disk, if jet-induced ejection ??

LIGO BH masses vs. PPISN masses

Pulsational Pair-Instability Supernova (CSM+ ⁵⁶Ni decay) ← CO Core →

 $M(ZAMS) = 100 M_{\odot}$ $M(ejecta) = 40 M_{\odot}$ $M(CSM) = 37 M_{\odot}$

 $M(^{56}Ni) = 6 M_{\odot}$

 $E = 2 \times 10^{52} \text{ erg}$

(Tolstov, KN+16)

Pulsational Pair-Instability Model for PTF 12dam (Interaction + Radioactive Decays)

Type I Superluminous Supernovae

- Double Power Source Models → good for UVLCs with Multiple Peaks Circumstellar Interaction + Pulsar or Radioactive decay
- The origin of massive He, O-rich CSM can be Pulsational Pair-Instability.
- If Pulational Pair-Instability → COHe CSM,

progenitors : 80 M_{\odot} < M < 140 M_{\odot}

- \rightarrow CSM + BH accretion
- → CSM + Radioactive decay (core collapse)
- → CSM (multiple ejection)
- or: M(magnetar) > 80 M_{\odot} ?? (CSM + Magnetar)
- Metallicity constraint (Z < 0.5 Z_{\odot})
- Ejected mass and the remaining core mass are consistent with the observed BH mass (~50 $\rm M_{\odot})$

Multiband LC simulations for AT 2019cow

(Tolstov +19)

Pulsational Pair Instability Model for AT2018cow

Fast-Evolving Luminous Transients (e.g., KSN 15K)

- Double power source models for light curves:
 - **Circumstellar Interaction**
 - + Pulsar or Radioactive decay
- Progenitors with dense CSM can be Super-AGB stars or PPI (or Wolf Rayet) stars ??
- Mass loss just before SNe in other mass range ??
- Nucleosynthesis ?
- AT2018cow (CS interaction:

PPISN or ECSN in Super-AGB or Binary Merger ??)