The Diversity of Pre-Supernova Evolution and Mass Loss of Massive Stars

Nathan Smith
University of Arizona/Steward Observatory, USA
OUTLINE

Diversity in Evolution: Single star evolution with mass loss vs. Binary Evolution. Why the paradigm has (finally) shifted (again). Single stars, stripped primaries, mass gainers, mergers, etc.

Diversity in Pre-SN mass loss and CSM: Winds vs. Episodic pre-SN mass loss, CSM shells, etc. Implications for progenitor links and explosions.

for reference, see my review on mass loss (Smith 2014, ARAA, 52, 487)
Massive Star Diversity

O type:
- O dwarfs, subdwarfs
- O supergiants
- O(f), O((f))+, etc.

Of?pe (peculiar = magnetic)

B type:
- B dwarfs
- B supergiants
- Be
- B[e] supergiants

WR:
- WO, WC, WN
- WNH
- Ofpe/WN9
- WN3/O3
- He stars (no winds)

LBV:
- cool or hot
- giant eruptions
 (Eta Car, SN impostors)
- S Dor variability
- microvariability
- LBV candidates
- CSM shells, or not

Yellow:
- Yellow supergiants
- Yellow hgypergiants
- dense CSM (or not)

RSG:
- normal RSGs
 (like Betelgeuse)
- extreme RSGs
 (like VY CMa)
- Miras
- OH/IR stars
- symbiotic
- super-AGB

Core collapse SN Diversity

Types Ib, Ic, Ic BL, IIb (IIb-e vs IIb-c), Ibn, Ibn/IIn, GRB, SLSN Ic
Types II-P (range of peak Lum), II-L, IIn (huge variety), SLSN IIn, SLSN II
A central issue in Massive Star Evolution:

SHEDDING THE HYDROGEN ENVELOPE

Massive stars are born as H-rich O-type stars on the main sequence, and they die as:

- **H-rich RSGs**
 - Type II-P/II-L SNe
 - (weird things in between)
 - YSG, BSG, LBV, other
 - Type IIb, II-pec, IIn, Ibn
- **H-free Wolf-Rayet or lower-mass He stars**
 - Type Ib/Ic SNe, GRBs
A central issue in Massive Star Evolution:
SHEDDING THE HYDROGEN ENVELOPE

2 stories for how we make WR stars and stripped envelope SNe

Binary RLOF

Requires high luminosity (high M_{ZAMS})

Stronger at higher Z (line-driven or dust)

Observed classes are a monotonic time sequence of progressive mass loss:

- O star \rightarrow LBV \rightarrow WR \rightarrow SN Ibc or RSG

winds

Works across all M_{ZAMS}

Can work at low Z too

Observed classes are a result of different evolutionary paths:

- Mass donor, mass gainer, common env., merger, etc.
Evolution and mass loss of massive single stars

In general, dense CSM is associated with stars in rapid transitional phases.

Sequence of increased mass loss during a star’s life:

Early O type ➔ LBV ➔ WN ➔ WC ➔ SN Ibc

Mid O type ➔ RSG ➔ YHG ➔ WN ➔ SN Ibc (or II-L, IIn, IIb)

Late O type ➔ RSG ➔ SN II-P
Evolution and mass loss of massive single stars

Adapted from Heger et al. 2003

Determined by assumed mass-loss rates in a stellar evo code.

Also: Geneva Models Maeder & Meynet et al.
1. Vast majority of massive stars are actually binaries (or triples). At least 2/3 of massive stars will interact with a companion before death.

2. Depends entirely on assumed mass-loss rates: ...But observed wind mass-loss rates have been revised downward by factor of ~3 due to effects of clumping. Shifts mass-loss burden to LBVs and RSGs, but...

3a. LBVs exploding as SNe IIn: LBVs are supposed to be a transitional phase before WR phase in single star view, not an end phase.

3b. LBV Environments: LBVs are too isolated from O stars – more isolated than WR stars. Their positions rule out their presumed mass-loss role in single-star evolution.

4. Relative fractions of SN types: Far too many stripped envelope SNe.

5. SN ejecta mass and progenitors: Very low ejecta masses for stripped envelope SNe. No massive WR progenitors of stripped envelope SNe (yet).
1. Vast majority of massive stars are actually binaries (or triples).

This is for young O-type stars. More than 2/3 will interact.

Multiplicity is the rule, not the exception.
Observational problems for single-star paradigm

1. Vast majority of massive stars are actually binaries (or triples). At least 2/3 of massive stars will interact with a companion before death.

2. Depends entirely on assumed mass-loss rates: but observed wind mass-loss rates have been revised downward by factor of ~3 due to effects of clumping. Shifts mass-loss burden to LBVs and RSGs, but...

3a. LBVs exploding as SNe II: LBVs are supposed to be a transitional phase before WR phase in single star view, not an end phase.

3b. LBV Environments: LBVs are too isolated from O stars – more isolated than WR stars. Their positions rule out their presumed mass-loss role in single-star evolution.

4. Relative fractions of SN types: Far too many stripped envelope SNe.

5. SN ejecta mass and progenitors: Very low ejecta masses for stripped envelope SNe. No massive WR progenitors of stripped envelope SNe (yet).
Stellar Winds. Weaker than you think.

Early/mid-2000s, several studies showed that hot-star winds (O, BSG, WR) are highly clumped, forcing observational mass-loss rates down.

- Fullerton et al. (2006); factors of 10-20 reduction in Mdot.
- Bouret et al. (2005); factors of >3.
- Puls et al. (2006); median of 5, but as much as 10x lower
- see also Crowther et al. 2003; Hillier et al. 2003; Massa et al. 2003; Evans et al. 2004.

Most studies require reduced mass-loss rates by at least a factor of 3. This fundamentally changes massive star evolution.

Shifts burden of mass loss to LBVs and RSGs.

(see Smith 2014, ARAA review)
Observational problems for single-star paradigm

1. Vast majority of massive stars are actually binaries (or triples). At least 2/3 of massive stars will interact with a companion before death.

2. Depends entirely on assumed mass-loss rates: but observed wind mass-loss rates have been revised downward by factor of ~3 due to effects of clumping. Shifts mass-loss burden to LBVs and RSGs, but...

3a. LBVs exploding as SNe IIn: LBVs are supposed to be a transitional phase before WR phase in single star view, not an end phase.

3b. LBV Environments: LBVs are too isolated from O stars – more isolated than WR stars. Their positions rule out their presumed mass-loss role in single-star evolution.

4. Relative fractions of SN types: Far too many stripped envelope SNe.

5. SN ejecta mass and progenitors: Very low ejecta masses for stripped envelope SNe. No massive WR progenitors of stripped envelope SNe (yet).
• Very luminous SNe IIIn require high mass of CSM
 - some require >10 M_\odot ejected in decade before core collapse (SN2006gy, 2005tf, et al.).

• Modulation of wind density & speed (Kotak & Vink 06; Trundle+08)

• Direct detections of SN progenitors (or host cluster)
 - SN 2005gl $M_0 \approx 50-60$ M_\odot (Gal-Yam & Leonard 2009)
 - SN 1961V $M_0 \approx 100$ M_\odot (Smith et al. 2011, Kochanek 2011)
 - SN 2010jl $M_0 > 30$ M_\odot (Smith et al. 2012; Fox et al. 2017)
 - SN 2009ip $M_0 \approx 50-80$ M_\odot (Smith+2010, Foley+11)
 - SNhunt275/2015bh – (Elias-Rosa+16; Thone+16)

 But caution: LBVs are bright, easy to detect in eruption…not the only IIIn progenitors

• Pre-SN outbursts – SN2009ip, SN2015bh, and friends
 (Ofek+13; Bilinski+15; Fraser+13; Pastorello+07,+13; Smith+10; Mauerhan+13, and more)
Observational problems for single-star paradigm

1. Vast majority of massive stars are actually binaries (or triples). At least 2/3 of massive stars will interact with a companion before death.

2. Depends entirely on assumed mass-loss rates: but observed wind mass-loss rates have been revised downward by factor of ~3 due to effects of clumping. Shifts mass-loss burden to LBVs and RSGs, but…

3a. LBVs exploding as SNe IIin: LBVs are supposed to be a transitional phase before WR phase in single star view, not an end phase.

3b. LBV Environments: LBVs are too isolated from O stars – more isolated than WR stars. Their positions rule out their presumed mass-loss role in single-star evolution.

4. Relative fractions of SN types: Far too many stripped envelope SNe.

5. SN ejecta mass and progenitors: Very low ejecta masses for stripped envelope SNe. No massive WR progenitors of stripped envelope SNe (yet).
O stars behave as expected. More massive ones are more clustered.

WR stars are evolved and skewed to right – as expected.

LBVs don’t behave as expected. They should be in between O stars & WN… but they are more dispersed than WC stars.

Models of dispersing clusters give typical ages of 10 Myr, initial masses around 20 M☉ – way to old and low mass for LBV’s current luminosity if single (Aghakhanloo +17).

THIS PARADIGM IS WRONG:

Early O type ➔ LBV ➔ WN ➔ WC ➔ SN Ibc
LBVs need long lifetimes for their L (>>3Myr). How can this be?

More massive

Mass donor
RLOF strips H envelope

Less massive

Mass gainer or merger
Increases M, L, spins up, becomes N-rich, etc.

Rejuvenated, becomes an LBV (eventually)
Rapid rotator, longer lifetime, Could be single after SN#1

Might get a kick.

LBV explodes as Supernova
Type IIn
(isolated, asymmetric CSM)

OB type

→ WR → SN Ibc (mass donor)

→ LBV → SN IIn (mass gainer)

Aghakhanloo + (2017)
1. Vast majority of massive stars are actually binaries (or triples). At least 2/3 of massive stars will interact with a companion before death.

2. Depends entirely on assumed mass-loss rates: but observed wind mass-loss rates have been revised downward by factor of ~3 due to effects of clumping. Shifts mass-loss burden to LBVs and RSGs, but…

3a. LBVs exploding as SNe II: LBVs are supposed to be a transitional phase before WR phase in single star view, not an end phase.

3b. LBV Environments: LBVs are too isolated from O stars – more isolated than WR stars. Their positions rule out their presumed mass-loss role in single-star evolution.

4. Relative fractions of SN types: Far too many stripped envelope SNe.

5. SN ejecta mass and progenitors: Very low ejecta masses for stripped envelope SNe. No massive WR progenitors of stripped envelope SNe (yet).
Way too many stripped-envelope SNe (even worse if you include SNe IIb...or if mass-loss rates are lower ... or if high mass stars have failed SNe).

Cannot make enough with single-star mass loss. Most SNe Ibc+IIb must be from binaries. (Smith et al. 2011)

SN subtype fractions from the Lick Observatory Supernova Search

Smith et al. (2011)
MNRAS, 412, 1522

Large galaxies, roughly Z_\odot
Main dichotomy in SNe (H envelope or not) can be explained mostly by binaries. Not much wiggle room for single stars to make SNe Ibc (low mass-loss rates!).
1. **Vast majority of massive stars are actually binaries (or triples).** At least $2/3$ of massive stars will interact with a companion before death.

2. **Depends entirely on assumed mass-loss rates:** but observed wind mass-loss rates have been revised downward by factor of ~ 3 due to effects of clumping. Shifts mass-loss burden to LBVs and RSGs, but…

3a. **LBVs exploding as SNe II**n:** LBVs are supposed to be a transitional phase before WR phase in single star view, not an end phase.

3b. **LBV Environments:** LBVs are too isolated from O stars – more isolated than WR stars. Their positions rule out their presumed mass-loss role in single-star evolution.

4. **Relative fractions of SN types:** Far too many stripped envelope SNe.

5. **SN ejecta mass and progenitors:** Very low ejecta masses for stripped envelope SNe. No massive WR progenitors of stripped envelope SNe (yet).

Observational problems for single-star paradigm
LOW EJECTA MASS

- Samples of stripped envelope supernovae (Types IIb, Ib, Ic, Ic-BL) show ejecta masses mostly around $2 \, M_\odot$.

- Roughly the same for Types IIb, Ib, & Ic.

With NS, that’s 3-4 M_\odot.

- He cores of $M_{ZAMS} = 8$-$18 \, M_\odot$ stars.
- Single stars can’t do that with winds. Requires binary stripping.

Type IIb particularly interesting…

Drout et al. 2011

Lyman et al. 2016
Binary Population Synthesis

Given initial orbital periods of O type stars, models predict:

~1/3 of massive stars are stripped primaries (WR stars, SNe Ibc, IIb)
(Sana+12, de Mink+2013, Gotberg+2017)

~1/3 (or 1/3 of Type II) are effectively single

~1/3 (or half of Type II) are mass gainers & mergers.

from PhD thesis of Manos Zapartas (Zapartas et al. 2019)
Diversity in Evolution: Single star evolution with mass loss vs. Binary Evolution. Why the paradigm has (finally) shifted (again). Single stars, stripped primaries, mass gainers, mergers, etc.

Main take-home point: Diversity in binary evolutionary paths dominates the diversity of stars and SNe, not monotonic scaling of mass-loss with M_{ZAMS}.

Wide diversity in evolutionary paths, even from 8-20 M_\odot (single or wide binary, stripped primaries, mass gainers, mergers, mass ratios, orbital period, etc).

Diversity in Pre-SN mass loss and CSM: Winds vs. Episodic pre-SN mass loss, CSM shells, etc. Implications for progenitor links and explosions.
Huge diversity in light curves of SNe IIn; wide variation in peak L and duration. CSM interaction can provide this with differences in:

- CSM mass/density/radial extent
- Explosion energy
- Geometry

To match a light curve is easy. To consistently explain light curves and spectra is a little harder.

\[
L = \frac{1}{2} w V_{SN}^3 = \frac{1}{2} M \frac{V_{SN}^3}{V_w}
\]
Mass-loss rates are too high for normal winds.

Mass-loss rate doesn’t capture diversity. Also:

- **Total mass** (0.01-25 M☉)
- **Duration of mass loss** (months to 10⁴ yr).
- **CSM speed** (10-2000 km/s).
- **Geometry** (filled or thin hollow shell, clumpy or smooth).
- **Asymmetry** (bipolar, disk, 1-sided, etc.).

Down here we get bright radio and X-ray emission.
Expansion speeds of $\gtrsim 10,000$ km/s suggest explosive mechanism in Eta Car's eruption. (see A.Rest's poster)

Bulk expansion speed was only 600 km/s, but had KE=$1e50$ ergs.

Similar to some pre-SN explosions/eruptions:

SN 2009ip: progenitor outbursts showed small mass of fast material, 7000 km/s (Smith+10; Foley+11; Pasorello+13). Most mass (H-alpha line width) expanding at 600 km/s.
RSG mass-loss rates probably ramp up in last few 10^3 yr of evolution due to high L/M ratio (not for entire RSG phase).

Davies et al. (2008) have studied several different RSG clusters, which have multiple RSGs in a single cluster (same age).

Self-obscured, optically faint, OH masers (i.e. luminous OH/IR stars) are always at the top of the RSG branch.

Mass lost rates start low but ramp up at end (see also Beasor & Davies 2017)

Davies et al. (2008)

VY CMa (Smith+01,+09)
CSM interaction for decades after SN traces mass loss 1,000-20,000 yr before death.

Strong CSM interaction indicates 0.2-20 M_\odot lost in relatively short time intervals before core collapse in some cases.

Many cases suggest disk-like CSM (double-peaked profiles).

\[t_{\text{wind}} = t_{\text{obs}} \times \frac{V_{\text{shock}}}{V_{\text{CSM}}} \]

\[t_{\text{wind}} \approx 20 \text{ yr} \times \frac{1 \times 10^4 \text{ km/s}}{10 \text{ km/s}} \]
Sometimes CSM interaction is *fleeting*, lasting for only for a few days after explosion. Heavy mass loss for months to years before explosion.

SN 1983K (Type II; Niemala+85)
SN 1993J (Type IIb; Benetti+94; Matheson+00)
SN 1998S (Type II-L/IIIn; Leonard+00; Shivvers+16)
SN2006bp (Type II-P; Quimby+07)
PTF11iqb (Type II-P/IIIn; Smith+15)
SN 2013fs (Type II-P/IIIn; Yaron+17, Bullivant+18)
SN 2013cu (IIb) and a number of other recent PTF objects (Gal-Yam+14; Groh+15; Khazov+16)

Interpreted as either early CSM interaction or flash ionized CSM. Either case requires strong pre-SN mass loss with 1e-3 M☉/yr for a year or so before cc.

These 4 also showed very strong continued CSM interaction at late times, some with double-peaked profiles (and specpol in 98S).
PTF 11iqb: A Type IIIn from a RSG progenitor

Spectroscopic evolution through 3 main phases:

1. Early CSM interaction (WR-like spectrum) in thick inner wind at ~10 AU.

2. SN photosphere expands to ~100 AU and engulfs CSM interaction (not because wind recombines or is obliterated). CSM interaction luminosity (re)heats ejecta.

3. SN continuum photosphere recedes and exposes CSM interaction again (multi-peaked asymmetric Hα).

How to HIDE signs of CSM interaction:

Disk-like geometry of CSM gets *enveloped* by SN photosphere. (Smith+15)

Probably relevant for many SNe II-P and II-L light curves.
Brief CSM interaction even in normal SNe II-P with no narrow lines (not IIn)

Morozova et al. (2016, 2017, 2017) model light curves of normal SNe II-P with SNEC code, finding that CSM interaction is needed to match the early peaks of many.

In sample of 20 well-observed nearby SNe II-P and II-L, they find that 70% need CSM shells with masses of 0.2-0.8 M\(_\odot\) (mostly within ~10 AU).

Implies strong mass loss of 0.01-0.1 M\(_\odot\)/yr in just few years before explosion.
Multiple Eruptions in Eta Car

Kiminki, Reiter, & Smith (2016)

Proper motions in HST images. Color coded vectors show speed and ages as function of locations.

Major eruptions before the 1843 eruption:

- Red = early 19th century
- Green = mid 16th century.
- Blue = mid 13th century.

Seems to have very different geometry in previous eruptions.

Some SNe show this too

SN 2006gy (multiple shells)
SN2009ip (multiple pre-SN eruptions)
Whatever the mechanism, it needs to be fairly common (not just SNe II), and must provide a wide range of energy and mass loss over a wide range of timescales before collapse. Shock or wind driven. Probably wide range of initial mass.

WHAT MECHANISM(s)?

1. **Pulsational Pair Instability**
 Woosley (2016)
 Problem: Too rare; only very high M_{ZAMS}.

2. **Degenerate flashes (Ne)**
 Arnett (1974)
 Problem: Too rare; only narrow range of low M_{ZAMS}.

3. **wave-driven mass loss**
 Quataert & Shiode (2012)
 Problem: Too short duration; only Ne/O/Si burning (~1 yr).

4. **explosive/unsteady burning**

5. **trigger binary interaction**
 Smith & Arnett 2014

6. **NS+RSG merger**
 Chevalier (2012)

Problem: Too rare; only very high M_{ZAMS}.

Problem: Too short duration; only Ne/O/Si burning (~1 yr).

Problem: Too rare; only narrow range of low M_{ZAMS}.

Problem: Too short duration; only Ne/O/Si burning (~1 yr).

Problem: Too short duration; only Ne/O/Si burning (~1 yr).
Diversity in Evolution: Single star evolution with mass loss vs. Binary Evolution. Why the paradigm has (finally) shifted (again). Single stars, stripped primaries, mass gainers, mergers, etc.

Main take-home point: Diversity in binary evolutionary paths dominates the diversity of stars and SNe, not monotonic scaling of mass-loss with M_{ZAMS}.

Wide diversity in evolutionary paths, even from 8-20 M_\odot (single or wide binary, stripped primaries, mass gainers, mergers, mass ratios, orbital period, etc).

Diversity in Pre-SN mass loss and CSM: Winds vs. Episodic pre-SN mass loss, CSM shells, etc. Implications for progenitor links and explosions.

For many SNe and many evolved stars, steady winds are a bad approximation.

Wide diversity of pre-SN mass ejection may require diverse mechanisms (no single theory so far can account for the diversity).

Points to some instability in pre-SN star – may be important for explosion.
Estimates from fleeting IIn signatures in SNe. High rates, but for very short time.
SNe probe recent (temporary) mass loss phases before SN

- **Range of timescales before core collapse.** Important clues about pre-SN evolution that we can’t always get from studying nearby stars.

- **Range of total CSM mass involved.** Detectable CSM and interaction requires dense CSM, but total mass and mass-loss rates vary widely (0.01-25 M_\odot).

- **Complex structures and mass-loss history.** Shells, clumps, disks, bipolar, asymmetric, different velocities... smooth R^{-2} density law is not always the best choice.

<table>
<thead>
<tr>
<th>Expansion timescales at $V_{SN}=10^4$ km/s:</th>
<th>Pre-SN timescales at $V_W=10^2$ km/s:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day = 5 AU</td>
<td>100 days</td>
</tr>
<tr>
<td>2 days = 10 AU</td>
<td>200 days</td>
</tr>
<tr>
<td>10 days = 50 AU</td>
<td>~3 yr</td>
</tr>
<tr>
<td>100 days = 500 AU</td>
<td>~30 yr</td>
</tr>
<tr>
<td>1 yr = 2000 AU</td>
<td>100 yr</td>
</tr>
<tr>
<td>10 yr = 0.1 pc</td>
<td>1000 yr</td>
</tr>
<tr>
<td>100 yr = 1 pc</td>
<td>10^4 yr</td>
</tr>
</tbody>
</table>

In general:

Steady winds and constant mass-loss rates are not safe assumptions for many progenitors
Large bubbles and shells

- **Fast wind sweeps into slow wind.** LBV \rightarrow WR, LBV eruption \rightarrow LBV, RSG \rightarrow BSG, blue loops, etc. Cool wind gets swept into a thin, dense shell at large radius. Cavity (fast wind) inside bubble.

- **Stalled wind from external pressure or bow shock.** Slow cool RSG wind stalls at terminal shock due to external pressure; H II region, earlier hot wind, external photoionization. see Mackey +14,16

Normal SN (not Type II), but with interaction at very late times.

<table>
<thead>
<tr>
<th>Expansion timescales at $V_{SN}=10^4$ km/s:</th>
<th>Pre-SN timescales at $V_{W}=10^2$ km/s:</th>
<th>Observed</th>
<th>Examples:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day = 5 AU</td>
<td>100 days</td>
<td>Flash Spec/Early bumps</td>
<td></td>
</tr>
<tr>
<td>2 days = 10 AU</td>
<td>200 days</td>
<td></td>
<td>Fleeting II (98S)</td>
</tr>
<tr>
<td>10 days = 50 AU</td>
<td>\sim3 yr</td>
<td></td>
<td>SNe II/LSNe</td>
</tr>
<tr>
<td>100 days = 500 AU</td>
<td>\sim30 yr</td>
<td></td>
<td>Late interaction (14C)</td>
</tr>
<tr>
<td>1 yr = 2000 AU</td>
<td>100 yr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 yr = 0.1 pc</td>
<td>1000 yr</td>
<td>87A, 88Z, 05ip, 93J</td>
<td></td>
</tr>
<tr>
<td>100 yr = 1 pc</td>
<td>10^4 yr</td>
<td>SNRs (Cas A)</td>
<td></td>
</tr>
</tbody>
</table>

Images:
- NGC 6888
- AG Car (HST)
- Pistol * (HST)
- Betelgeuse (Herschel)
- Hert 3-519
Distant CSM: bubbles, shells, bipolar, strong winds

- **Fast wind sweeps into slow wind.** As for previous slide, but smaller (slower winds, more recent transition). Asymmetry in slow wind.
- **Sustained mass loss.** Extreme RSGs with strong, dense winds.
- **Past eruption or common envelope.** Coasting massive shell.

Onset of interaction (or sustained) at late times. IR echoes.

<table>
<thead>
<tr>
<th>Expansion timescales at $V_{SN}=10^4$ km/s:</th>
<th>Pre-SN timescales at $V_{W}=10^2$ km/s:</th>
<th>Observed Examples:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day = 5 AU</td>
<td>100 days</td>
<td>Flash Spec/Early bumps</td>
</tr>
<tr>
<td>2 days = 10 AU</td>
<td>200 days</td>
<td>Fleeting IIn (98S)</td>
</tr>
<tr>
<td>10 days = 50 AU</td>
<td>~3 yr</td>
<td>SNe IIn/SLSNe</td>
</tr>
<tr>
<td>100 days = 500 AU</td>
<td>~30 yr</td>
<td>Late interaction (14C)</td>
</tr>
<tr>
<td>1 yr = 2000 AU</td>
<td>100 yr</td>
<td>87A, 88Z, 05ip, 93J</td>
</tr>
<tr>
<td>10 yr = 0.1 pc</td>
<td>1000 yr</td>
<td>SNRs (Cas A)</td>
</tr>
<tr>
<td>100 yr = 1 pc</td>
<td>10^4 yr</td>
<td></td>
</tr>
</tbody>
</table>
Expansion timescales at $V_{SN}=10^4$ km/s:
- 1 day = 5 AU
- 2 days = 10 AU
- 10 days = 50 AU
- 100 days = 500 AU
- 1 yr = 2000 AU
- 10 yr = 0.1 pc
- 100 yr = 1 pc

Pre-SN timescales at $V_W=10^2$ km/s:
- 100 days
- 200 days
- ~3 yr
- ~30 yr
- 100 yr
- 1000 yr
- 10^4 yr

Observed Examples:
- 1 day = 5 AU
- 2 days = 10 AU
- 10 days = 50 AU
- 100 days = 500 AU
- 1 yr = 2000 AU
- 10 yr = 0.1 pc
- 100 yr = 1 pc

Cocoons, young bipolar nebulae, massive disks, strong winds

- **B[e] disk/torus.** Rapid rotation or binary RLOF
- **Sustained dense winds.** Extreme RSGs/YHGs with strong winds.
- **Recent LBV eruption or common envelope.** Massive shell. Probably bipolar shape (pinched waist = early, lobes = late).

Strong interaction in main peak (Type IIn) and late times.
Close-in CSM, disks, cocoons. Limited to small radii.

- **Enhanced pre-SN winds.** Dense winds turn-on within few years of SN.
- **Keplerian disks / Magnetically confined disks.** Rapid rotators (Be stars), binary RLOF/L2, magnetic stars (Romanova & Owocki 2016).
- **Immediate pre-SN common envelope or binary interaction.** Probably disk-like shape, small radii (~10 AU).

Strong interaction only at early times. Possibly very asymmetric.

Expansion timescales at $V_{SN}=10^4$ km/s:

- 1 day = 5 AU
- 2 days = 10 AU
- 10 days = 50 AU
- 100 days = 500 AU
- 1 yr = 2000 AU
- 10 yr = 0.1 pc
- 100 yr = 1 pc

Pre-SN timescales at $V_{W}=10^2$ km/s:

- 100 days
- 200 days
- ~3 yr
- ~30 yr
- 100 yr
- 1000 yr
- 10^4 yr

Observed Examples:

- Flash Spec/Early bumps
- Fleeting IIn (98S)
- SNe IIn/SLSNe
- Late interaction (14C)
- 87A, 88Z, 05ip, 93J
- SNRs (Cas A)
Instead, LBVs are binary products (Kicked mass gainers, mergers...) Companion may be faint (stripped and hot), dead, or merged.

Products of mergers and mass gainers in RLOF will be diverse (depends on initial mass, binary mass ratio, separation, transfer efficiency, etc.)

Giant eruptions / SN impostors from the merger event.
Narrow components - pre-shock CSM

SNe IIn:

- typically show speeds of 60-200 km/s (LBVs and YHGs)
- Sometimes several 10^2 to 10^3 km/s (more massive LBVs)
- Sometimes slower (few x 10 km/s), implying ex-RSGs

Note: Narrow absorption can be seen or not, depending on geometry, resolution, and physics of rad tran.
CSM Interaction

Light curves from SN/shell collisions simulations using ZEUS (van Marle +10) (see also Woosley+07; Moriya+14)

- Increasing shell density (total mass) increases the peak luminosity
- Increasing the outer shell radius (also increasing total M) increases duration

Efficiency of 10-50% in converting KE into radiation.

$M_{\text{CSM}}/M_{\text{Tot}}$
CONSTRAINTS FROM SUPERNOVA PROGENITOR STARS

Type II-P
RSGs with initial mass 8.5 – 20 M$_\odot$ (~12)
Most common. Single stars (or wide binaries) of low-ish mass.

Type Ibc
Maybe 1 detection, (15 upper limits)
Binary channel: mass donors in RLOF.

Type IIb
13-17 M$_\odot$ binary (3)
 Might favor locations in clusters. Could be 8-100 M$_\odot$

Type II-L
18-25 M$_\odot$ (2)
Like II-P, but a little more massive (?)

Type IIn
>30-100 M$_\odot$ (5)
LBV-like. Some very massive stars, but weird & poorly understood.

Also: SN ejecta masses of SNe Ibc & IIb are small (Dessart et al.; Haschinger et al.)
Whatever the mechanism, it needs to provide a wide range of energy and mass loss over a wide range of timescales before collapse. Probably also a wide range of initial mass (see Smith 2014; Smith & Arnett 2014).

This may alter the progenitor core structure...

C burning ~ 1000 yr
Ne, O burning \sim few years
Si burning \sim few days
CSM Interaction

Basic picture leads to complicated observations.

Four main zones in a simple shock:

1. Pre-Shock CSM
2. Shocked CSM - behind forward shock
 (cooling makes this collapse in a SN IIn)
3. Shocked ejecta - reverse shock
4. Unshocked freely expanding ejecta

CONTINUUM PHOTOSPHERE
- Moves through these zones with time.
- Can come from different zones at the same time.
- There can be no photosphere (late times, thin).

SPECTRAL LINES
- Can be seen from any or all of these zones, changing with time.
- Line profiles modified or hidden by electron scattering, occultation by photosphere, or dust.

ASYMMETRY CANNOT BE IGNORED
- CSM can be highly asymmetric (i.e. disk)
- Appearance may depend on viewing angle
- Can see multiple zones simultaneously
- Can hide narrow lines altogether
- X-rays can escape… or not

SHOCK RADIATION PROPAGATES OUTWARD AND INWARD, MODIFIES CSM AND EJECTA

\[
L = \frac{1}{2} \, wV_{SN}^3 = \frac{1}{2} \, \dot{M} \, \frac{V_{SN}^3}{V_w}
\]

Efficient conversion of \(KE \leftrightarrow \) Light
ASYMMETRIC CSM (Part I): DISKS, RINGS, BIPOLAR

Large CSM shells are often spherical, but small (young) ones are usually asymmetric. Asymmetry gets washed out as they expand.

If it isn’t spherical, then a disk is a good first approximation.

- Rapid rotators
- Magnetic stars
- Binary RLOF
- Mergers

Even bipolar lobes are “disk like” when CSM interaction begins, because of pinched waist. None of these require a RSG-to-BSG transition, although that may happen too.

Asymmetry impacts our interpretation of the SN observations.

- Energy budget (solid angle)
- Polarization and line profiles
- Multiple optical depths (X-rays can escape out poles)
- Two different photospheres can be seen simultaneously: normal SN ejecta photosphere + shocked CSM
- Added diversity due to viewing angle
- If disk has limited radius, CSM interaction can be hidden
ASYMMETRIC CSM ALLOWS HIDDEN CSM INTERACTION

If the CSM is in a disk with a limited outer radius, it can be overrun and buried inside the SN ejecta, but the collision continues underneath (Smith+15; McDowell, Duffell, & Kasen 18).

• AT first, we see early CSM interaction (“Flash” spectrum) in first few days at R ~ 10 AU.

• SN ejecta sweep past the disk and engulf it within several days to weeks. Shock interaction is now buried under photosphere, inside opaque ionized SN ejecta. Interaction can add heat from the inside. Enhanced luminosity during main light curve peak, even with no direct signatures of CSM interaction (narrow lines, X-rays).

• After SN ejecta recombine, photosphere recedes and exposes CSM interaction once again. Late time-signatures of interaction.

SN 1998S and PTF11iqb are good examples of this.

The Impossible SN (PTF14hls) may be another (Andrews & Smith 18)
SN impostors are much more diverse than traditionally thought
Wide range in peak L, duration, E_{rad}, KE, v_{exp}, M_{ZAMS}, etc.

peak $M = -8$ to -14 mag or more

$E_{\text{tot}} = 1e46$ to $1e50$ erg

$T = \text{weeks to decades}$

bulk $V_{\text{exp}} = 10s$ to 1000 km/s

M_{ej} (nebulae) = 0.01 to 20 M_{\odot}

$M_{\text{ZAMS}} = 10$-ish to upper mass limit

Possibly related:

V1309 Sco, V838 Mon (mergers)

SN2008Slike (electron capture?merger? supergiant outburst?)

Smith, Li, Silverman, Ganeshalingam, AVF 2011
“LBV Diversity” - mostly KAIT
Luminous Blue Variables (LBVs) and their presumed role in stellar evolution

In the single star picture, LBVs are stars in *transition*. End of H burning, start of He burning.

Sequence of increased mass loss during a star’s life:

Early O type → LBV → WN → WC → SN Ibc