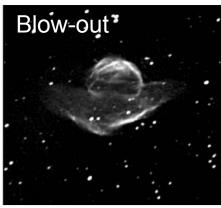
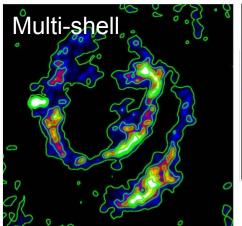


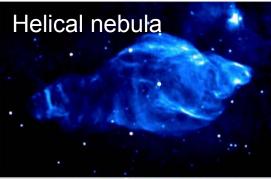
International Centre for Radio Astronomy Research

27 new SNRs found with the Murchison Widefield Array

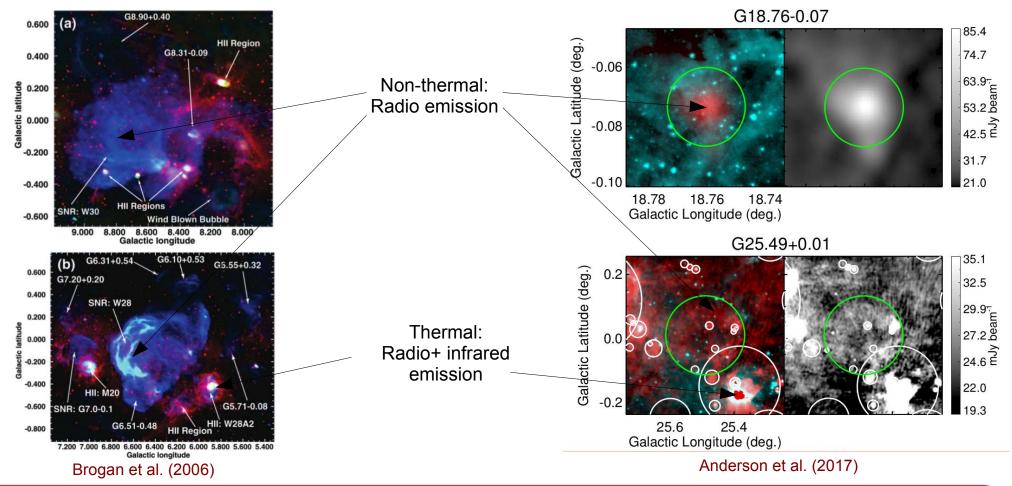
Natasha Hurley-Walker Curtin University




Radio SNR



- 295 known (Green 2017)
- Expect 3x more
 (from O,B star counts, SN rates in Local Group, predicted synch lifetimes)



Dubner & Giacani 2015

- 95% of SNR detected via radio
- Selection effects?
 - Resolution
 - Field-of-view / survey speed
 - Surface brightness sensitivity
 - Quality of ancillary IR data
- Frequency of search
- Bandwidth of search

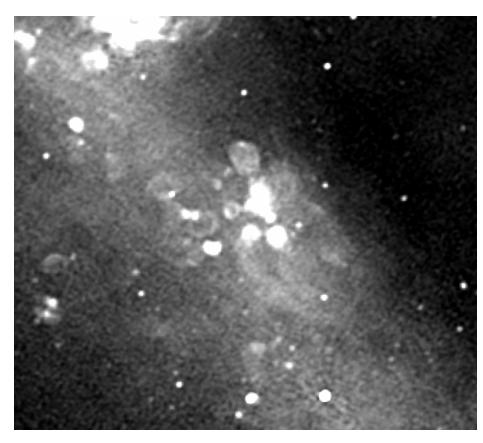
Detecting radio supernova remnants

GaLactic and Extragalactic All-sky MWA survey

Dec < 30°, 72 – 231 MHz, resolution ~ 2', via 4 weeks with MWA 128T

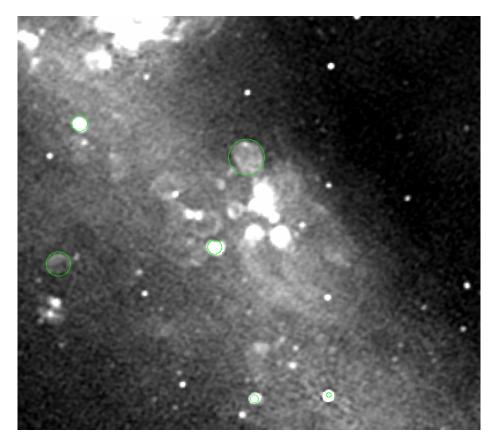
Publication highlights

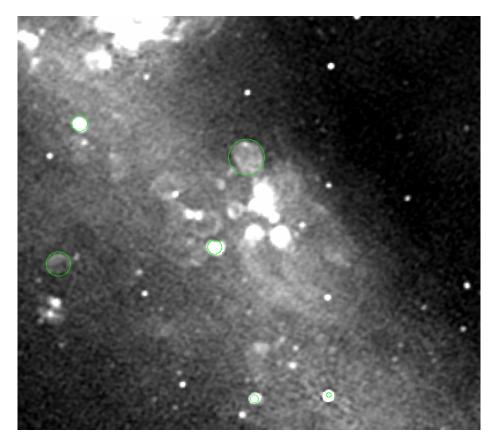

- Riseley et al. 2018: The POlarised GLEAM Survey (POGS) I: First Results from a Low-Frequency Radio Linear Polarisation Survey of the Southern Sky
- For et al. 2018: A multifrequency radio continuum study of the Magellanic Clouds I. Overall structure and star formation rates
- Su et al. 2018: Galactic synchrotron distribution derived from 152 H II region absorption features in the full GLEAM survey
- Galvin et al. 2018: The spectral energy distribution of powerful starburst galaxies I. Modelling the radio continuum
- Callingham et al 2017: Extragalactic Peaked-spectrum Radio Sources at Low Frequencies
- George et al. 2017: A study of halo and relic radio emission in merging clusters using the Murchison Widefield Array
- Kapinska et al. 2017: Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies
- Murphy et al. 2017: Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array
- Murphy et al. 2017: A search for long-time-scale, low-frequency radio transients
- Su et al. 2017: Galactic synchrotron emissivity measurements between 250° < I < 355° from the GLEAM survey with the MWA
- Hurley-Walker et al. 2017: GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey I. A low-frequency extragalactic catalogue
- Callingham et al. 2016: Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A
- Lenc et al. 2016: Low-frequency Observations of Linearly Polarized Structures in the Interstellar Medium near the South Galactic Pole
- Hindson et al 2016: A Large-Scale, Low-Frequency Murchison Widefield Array Survey of Galactic H ii Regions between 260 < I < 340
 - Wayth et al. 2015: GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey

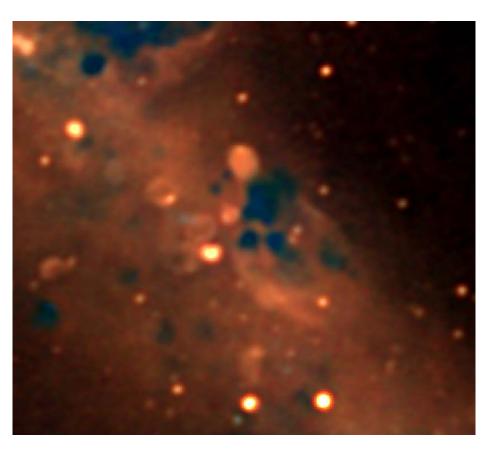

GLEAM data

- Obtain via: gleam-vo.icrar.org or SkyView
- 8-MHz sub-bands from 72 231 MHz
- Wideband 30 60 MHz images (shown below)

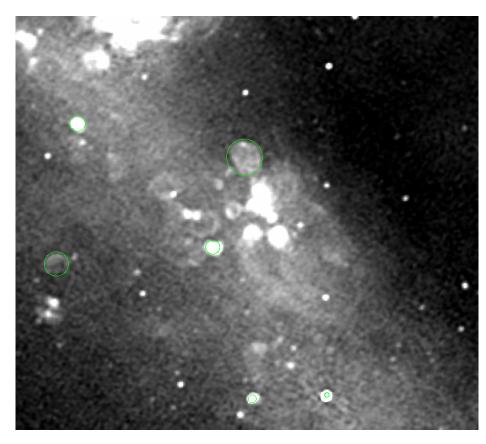
- Flux calibration accuracy ~ 8%
- Extragalactic catalogue of 300k sources
- Multiscale cleaning of Galactic Plane: data release in July



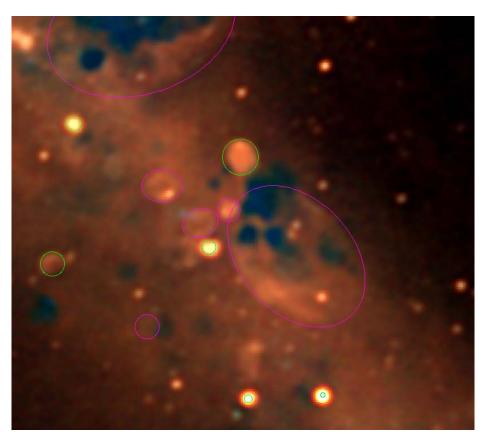

GLEAM 200MHz



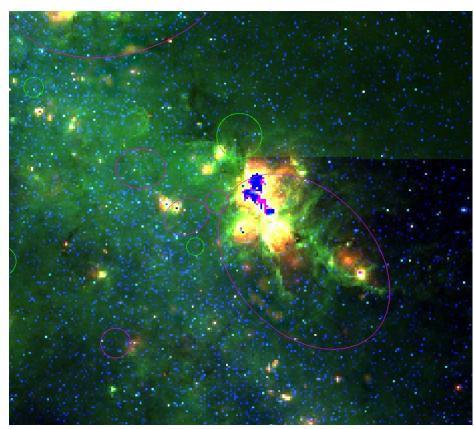
GLEAM 200MHz

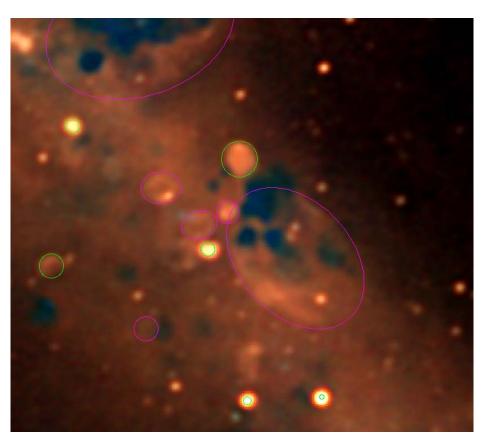


GLEAM 200MHz



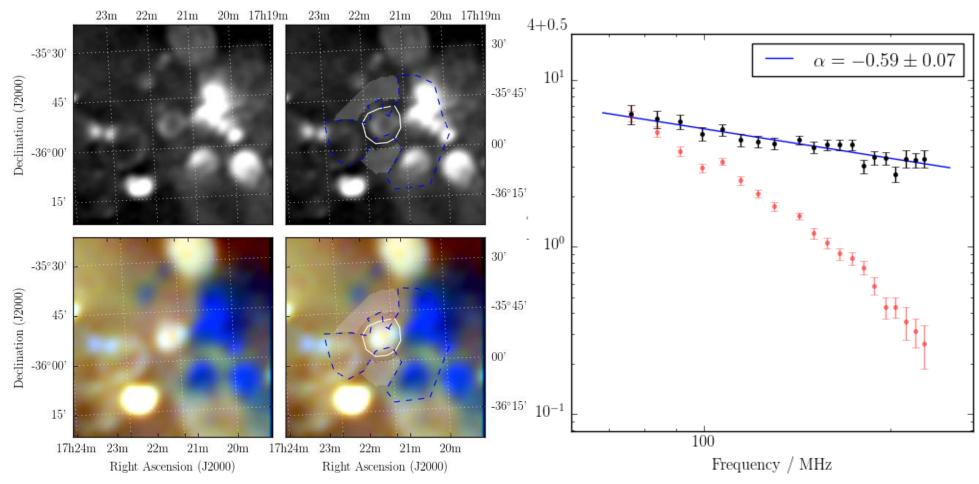
GLEAM RGB (88/118/154)MHz


GLEAM 200MHz


GLEAM RGB (88/118/154)MHz

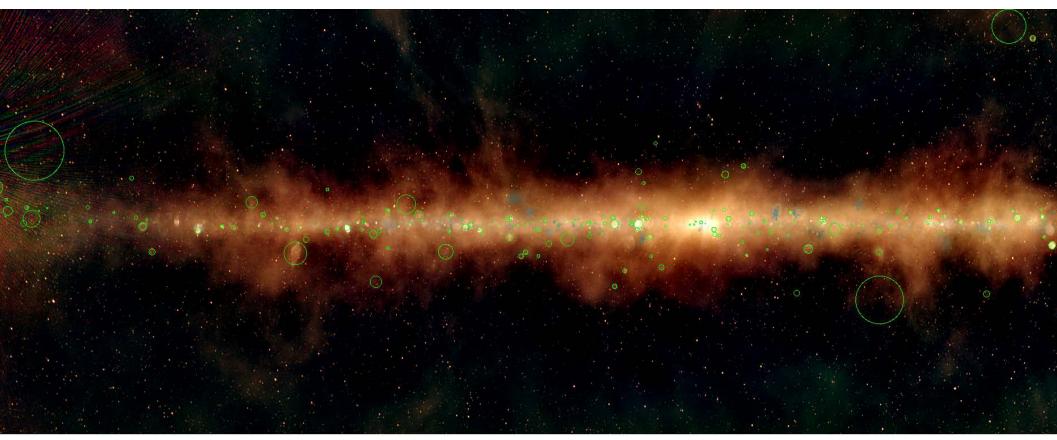
The GLEAM (and WISE) view of SNRs

Widefield Infrared Survey Explorer (WISE) RGB (4.6/12/22)µm

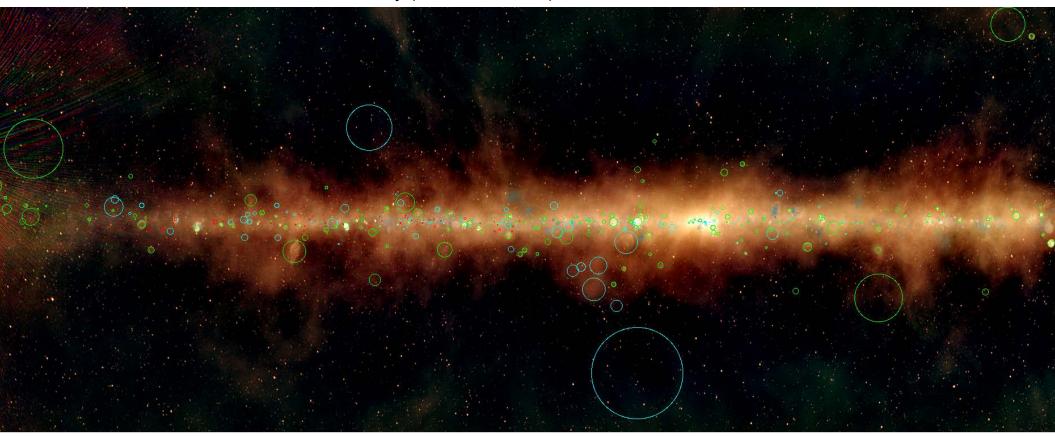


22µm emission = thermal small dust grains 12µm emission = PAHs fluorescing from UV

3/6/19: Natasha Hurley-Walker: 27 New SNRS with MWA

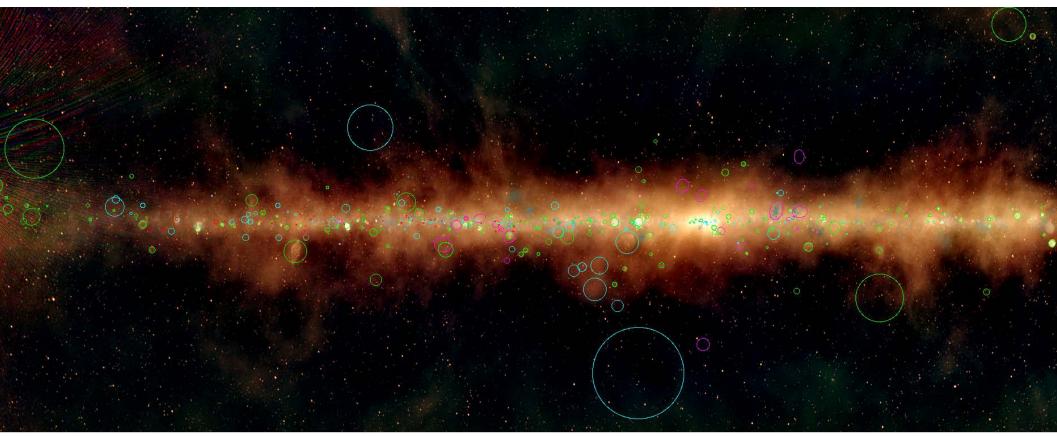


Measuring SNRs

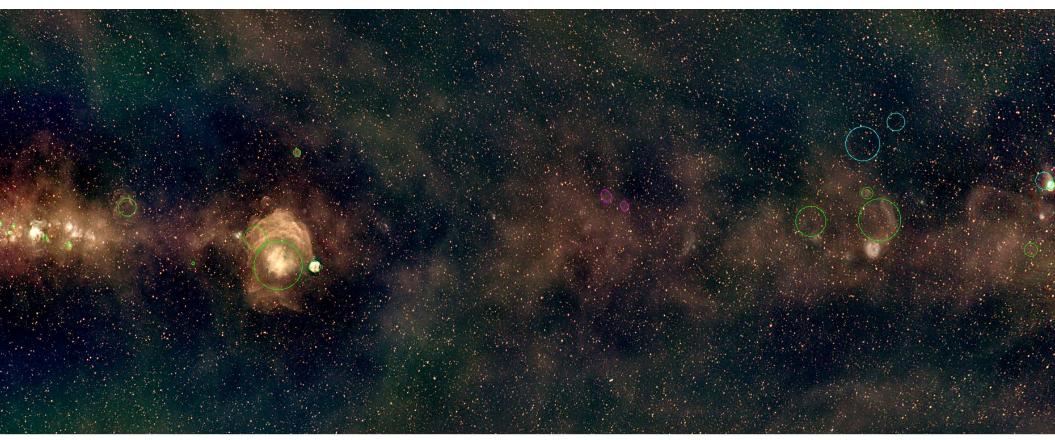


345° < / < 60°

Known SNRs (green), known candidates (cyan), THOR candidates (red)


The HI/OH/RRL survey (Anderson+2017)

 $345^{\circ} < I < 60^{\circ}$


Known SNRs (green), known candidates (cyan), THOR candidates (red), new candidates (magenta)

 $345^{\circ} < I < 60^{\circ}$

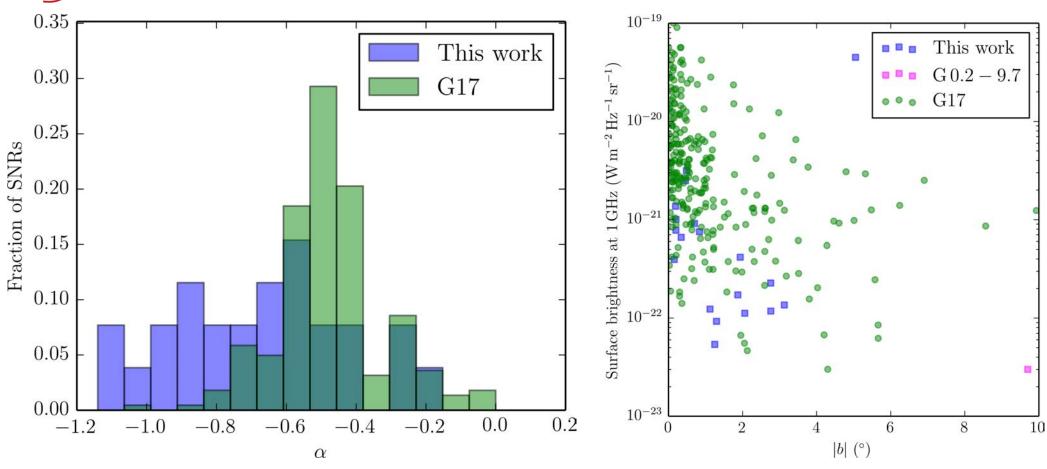
Known SNRs (green), known candidates (cyan), THOR candidates (red), new candidates (magenta)

180° < / < 240°

27 new candidate SNRs

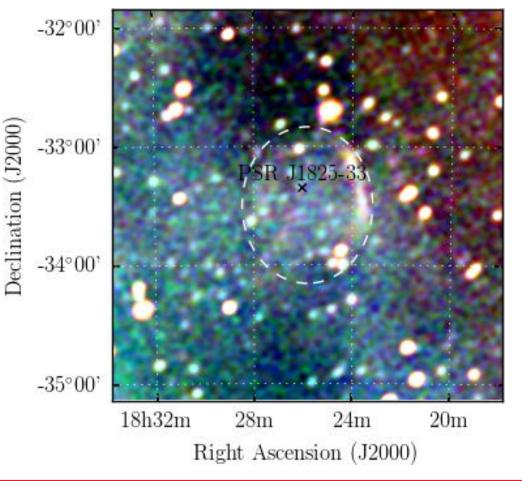
Name	RA	Dec	a	b	PA	$S_{200\mathrm{MHz}}$	α	Ancillary	Morphology	Class
	(J2000)	(J2000)	/	/	0	$_{ m Jy}$		data		
1	2	3	4	5	6	7	8	9	10	
G 0.2-9.7	18 25 50	-33 30	66	66	0	2.3 ± 0.2	-1.1 ± 0.1	_	Filled & partial shell	II
G2.2+2.8	$17\ 40\ 10$	-25 39	72	62	0	9 ± 1	-0.19 ± 0.06	E11	Shell?	ΙI
G7.4+0.3	$18\ 01\ 06$	-22 21	18	14	90	2.3 ± 0.3	-0.8 ± 0.2	_	Shell	ΙΙ
G18.9-1.3	$18 \ 30 \ 04$	-13 00	68	60	355	9.0 ± 0.8	-1.1 ± 0.2	_	Shell	I
G19.2-3.1	$18\ 37\ 19$	-13 41	32	32	0	2.4 ± 0.3	-0.6 ± 0.2	E11	Shell	I
G19.7-0.7	$18\ 29\ 35$	-12 03	28	28	0	7.0 ± 0.3	-0.24 ± 0.05	E11	Shell	I
G20.2-0.3	$18\ 28\ 47$	-11 27	38	38	0	_	_	_	Partial shell	III
G21.8+0.2	$18 \ 30 \ 15$	-09 47	64	42	320	37 ± 1	-0.61 ± 0.05	E11	Filled	I
G23.1+0.2	$18 \ 32 \ 43$	-08 38	26	26	0	17.3 ± 0.4	-0.64 ± 0.05	E11	Shell	I
G24.1-0.3	$18\ 36\ 26$	-08 01	48	48	0	41 ± 1	-0.87 ± 0.05	E11	Shell	I
G25.4-1.9	$18\ 44\ 18$	-07 35	76	94	35	17.0 ± 0.5	-0.45 ± 0.03	E11	Shell	I
G28.4+0.2	$18\ 42\ 22$	-03 58	14	14	0	4.2 ± 0.3	-0.7 ± 0.1	_	Shell	I
G28.8-0.5	$18\ 45\ 30$	-03 54	10	10	0	3.7 ± 0.1	-0.51 ± 0.06	E11	Shell	I
G35.4-0.0	$18\ 56\ 02$	$02 \ 09$	26	22	5	12.9 ± 0.4	-0.39 ± 0.06	_	Partial shell	ΙI
G230.5+1.3	$07\ 28\ 57$	-14 56	54	40	60	3.5 ± 0.1	-0.60 ± 0.07	E11	Filled	I
G232.2+2.1	$07\ 35\ 08$	-16 03	50	76	340	7.2 ± 0.1	-0.58 ± 0.02	E11	Filled	I
G349.1-0.8	$17\ 20\ 24$	-38 31	14	14	0	3.7 ± 0.1	-0.83 ± 0.07	MGPS	Shell	ΙΙ
G350.8+0.7	$17\ 18\ 53$	-36 17	56	80	43	$64 \pm 1*$	$-0.9 \pm 0.1*$	_	Partial shell	ΙΙ
G350.8 + 5.1	$17\ 01\ 52$	-33 40	6	6	35	16.5 ± 0.4	-0.27 ± 0.06	_	Filled	ΙΙ
G351.0-0.6	$17\ 25\ 07$	-36 49	12	12	0	0.50 ± 0.04	-0.64 ± 0.09	MGPS	Partial shell	ΙΙ
G351.4+0.5	$17\ 21\ 31$	-35 53	9	9	0	3.35 ± 0.09	-0.42 ± 0.07	MGPS	Shell	I
G351.5+0.2	$17\ 22\ 45$	-35 59	18	14	20	1.8 ± 0.1	-0.9 ± 0.1	MGPS	Partial shell	ΙI
G351.9+0.2	$17\ 24\ 14$	-35 40	20	16	0	4.4 ± 0.2	-0.98 ± 0.07	MGPS	Shell	I
G353.1+0.8	$17\ 24\ 46$	-34 21	96	66	20	$16.5 \pm 0.4*$	$-1.0 \pm 0.1*$	_	Partial shell	III
G355.4+2.8	$17\ 23\ 28$	-31 16	22	22	0	1.5 ± 0.2	-0.8 ± 0.2	_	Filled	I
G356.5-1.9	$17\ 44\ 55$	-32 54	36	48	40	14.9 ± 0.3	-0.71 ± 0.05	_	Filled	I
G358.4-0.8	$17\ 44\ 46$	-30 43	34	42	354	$21.8 \pm 0.3*$	$-0.8 \pm 0.1*$		Partial shell	III

3/6/19: Natasha Hurley-Walker: 27 New SNRS with MWA


New SNRs

Hurley-Walker et al. (submitted): New candidate SNRs from GLEAM

Comparisons with known SNR (Green 2017)



Pulsar associations

Name	Associated	Coincidence	Likelihood	Distance	\overline{a}	b	PSR age	SNR age	Stage
	pulsar	chance $(\%)$	of assoc.	(kpc)	(pc)	(pc)	(kyr)	(kyr)	
1	2	3	4	5	6	7	8	9	10
G0.2 - 9.7	PSR J1825-33	5	good	1.24	24	24	_	1–9	free / S-T
G21.8 + 0.2	PSR J1831-0952	95	good	3.68	165	45	128	40 – 120	radiative
G230.5 + 1.3	PSR J0729-1448	4	good	2.68	47	31	35	17 - 48	S-T
G232.2 + 2.1	PSR J0734-1559	3	good	_	_	_	197	_	S-T
G356.5 - 1.9	PSR J1746-3239	57	marginal	_	_	_	482	_	_
G358.4 - 0.8	PSR B1742-30	79	marginal	2.64	32	26	550	10 – 18	S-T

G 0.2–9.7

J1825-33 (RRAT)

 $DM = 43 \pm 2 \text{ cm}^{-3}\text{pc}$

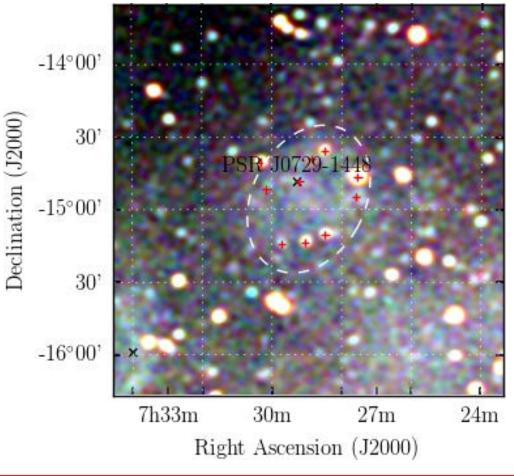
- \rightarrow Dist = 1.24 kpc
- \rightarrow diameter = 24 pc

SNR age estimate < 9k yr

$$P = 1.27 s$$

No P

→ no age estimate

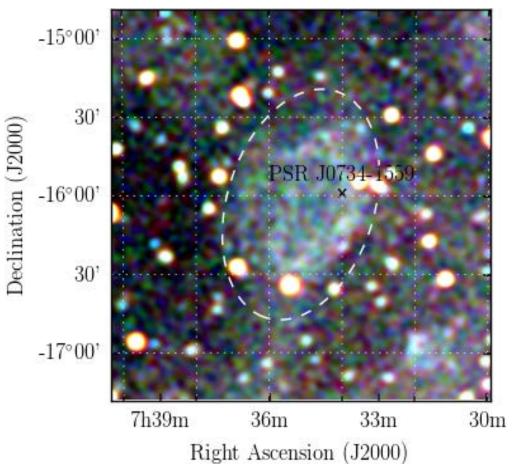

Position accuracy ~ 15'

→ no kick velocity

Burke-Spolaor & Bailes 2010)

G 230.5+1.3

J0729-1448 DM = 92 cm⁻³pc \rightarrow Dist = 2.68 kpc \rightarrow diameter = 47 x 31 pc SNR age estimate ~ 36k yr


P = 252 ms $P = 10^{-13} \text{ s s}^{-1}$ Age ~ 35k yr

Kick velocity 180 km s⁻¹

Morris et al. (2002), Petroff et al. (2013)

G 232.2+2.1

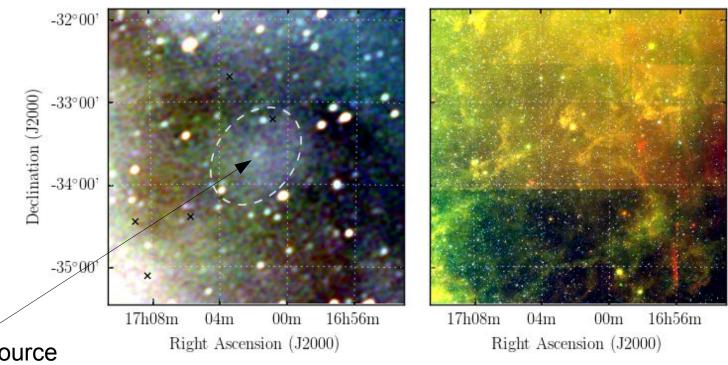
J0734-1559 (γ-ray pulsar)

No DM

- → No Dist
- → No diameter
- → No SNR age estimate

P = 155 ms

 $\dot{P} = 10^{-14} \text{ s s}^{-1}$


Age ~ 200k yr

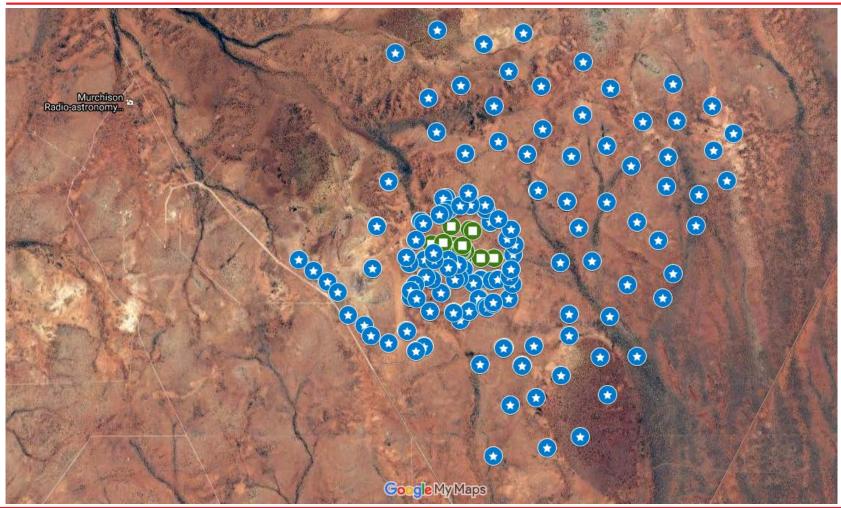
Sokolova & Rubstov (2016)

New pulsars?

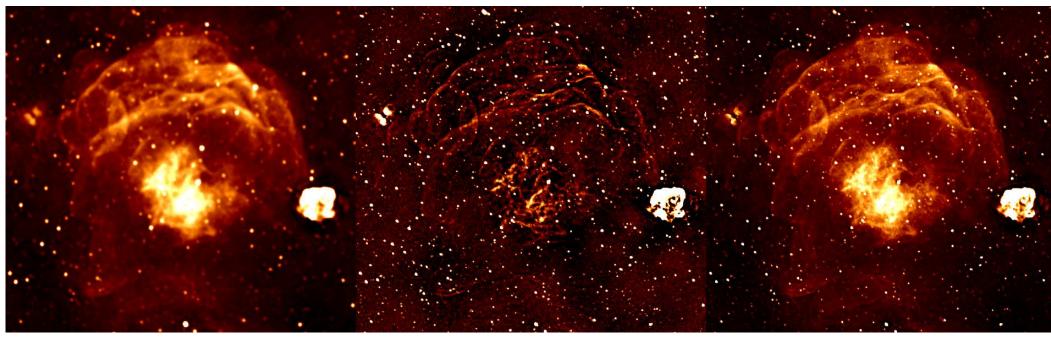
G 350.8+5.1

Compact source $\alpha = -1.4$ Pulsar?

GLEAM RGB (88/118/154)MHz WISE RGB (8/12/22)um


GLEAM-eXtended

3/6/19: Natasha Hurley-Walker: 27 New SNRS with MWA



GLEAM-eXtended

With these powers combined...

GLEAM 72 – 103 MHz Resolution: 2'

MWA Phase II 72 – 103 MHz Resolution: 1' (Credit: Chenoa Tremblay)

Feathered combination

