SNRs as Subgrid Physics

SNRs are vital for **Feedback** in cosmology and galaxy formation simulations.

Some mass in a cell forms stars, some of them explode, affecting future star formation.

Can we improve the handful of numbers that they use?

Cygnus Loop Galex NUV image

Mike Dopita

What do Simulations Need?

How many stars explode, and when? Progenitors: What's left after radiative losses? Kinetic energy: Heavy elements: How do cooling rates evolve? How much is made and survives? Dust: Cosmic rays: What fraction of the energy?

Progenitors: Core Collapse vs la

Symmetry: Lopez et al.

Fe Kα centroid: Yamaguchi et al.

Core Collapse Progenitors: Remnants

Remnants; PSR/SNR associations Crab, Cas A

CTB 1/PSR 0002+6216 Schinzel et al.

Core Collapse Progenitors: Morphology

O-rich Remnants Cas A and 7 others

Why only a (NGC4999) outside local group?

Jets; rotation

Rings; bubbles

Milisavljevic & Fesen 2015

Core Collapse Progenitors: X-ray abundances

Katsuda et al. 2018 MW and MC

Core Collapse Progenitors: Stellar Populations

Auchettl et al.; SMC star formation history

Type la Progenitors

Single vs double degenerate

Delay time

Galaxy metallicity

Inside Pne?

Fast WD; G70.0-21

Type Ia: G70.0-21.5

High velocity WDs from double Degenerate systems with GAIA

Type Ia: G70.0-21.5

Faint X-ray and optical

60-90 km/s shocks in partly neutral, low density gas,

Evolution in the Galactic Halo

Hα Mosaic Fesen et al.

Type Ia: LMC Balmer filaments

N103B; Ghavamian et al.

Not SSS progenitors; Kuuttila et al.

Type Ia: CSM interaction; Kepler

600 pc from plane, 10 to 10^3 cm⁻³ density.

 \geq 0.3 M _{SUN} from companion mass loss?

N overabundance? Katsuda et al., Dopita et al. Dust from progenitor; Williams et al. High velocity; Blair et al. No bright companion; Ruiz-Lapuente et al.

PN? Tsebrenko & Soker, but ears show strong Si, S; ejecta

Core-Degenerate? Tsebrenko & Soker

Sankrit et al. HST proper motion

Kinetic Energy

Are they all 10⁵¹ ergs ?

Subluminous, superluminous

After radiating away most of energy (snowplow)

Depends on ISM environment over many pc

Need Distances

Distances: GAIA

Cygnus Loop

Absorption lines to BD +31 4224

Dust absorption in interacting cloud from Green et al.

735±25 pc

Fesen et al.

Energy Remaining after Radiation

Drives Turbulence, governs star Formation

1D, uniform medium 0.48 E₀
after shell formation;
Most of energy radiated in EUV
Cox 1972

Realistic ISM

Energy Remaining after Radiation

For cooling and diagnostics

Fe/O and R-process

To measure from X-rays:

```
Separate ejecta from ISM
need T and n<sub>e</sub>t; fit simultaneously with abundances
need density; filling factor
need dust; X-rays see gas phase
He, C bremsstrahlung
Spatial resolution
```

Tycho:

Cr and Mn as diagnostics for explosion mechanism

Fitting multi-temperature plasma with single T gives wrong abundances

Cas A Si and Fe abundances; Hwang & Laming

Models: need T and n_et

Yamaguchi et al.

Dust

How much is made?

SNe -- up to 0.5 M_{SUN} in SN 1987A; Matsuura et al.

How much survives? Cas A; ejecta and AGB wind

How much ISM dust is destroyed?

Dust

Cas A

Unshocked ejecta Clumps Shocked ejecta X-ray CSM

Dust to gas ~ 0.2 in clumps 0.001 in hot gas

Survival of progenitor AGB dust?

Dust

Important coolant for SNR evolution

(a)

(b)

[Fe II] 5333

[Fe XIV] 5303

5300

(c)

[Fe VII] 5276

[Fe II] 5262

5200

6600

6700

[Fe II] [Fe II] 4416 4458

4400

Cosmic Rays

10% of energy, $\gamma = 4/3$

Immune to radiative losses

SNRs are favored source of CRs up to $\sim 10^{15}$ eV

Cosmic Rays

T = 140,000 V_{100}^2 --- if no energy in CR

 V_s from proper motion and distance T_i from line widths T_e from X-rays (small)

Proper motion V = 2900 - 4000 km/s

Efficiency < $6\%/f_0$ in these Balmer-dominated shocks

Hovey et al. -- 0509-67.5

Cosmic Ray of fast neutral Precursor?

Gamma-Rays

Room for Improvement

Model

Reality Hubble Heritage Mosaic

What Did I Leave Out?

CSM interaction Cas A QSFs

SNRs in superbubbles How can we see them? Important for CRs

Molecules

Radio

Core Collapse Progenitors

IMF plus mass cut 8 M_{SUN}?

Sensitive function of mass cut Evolution, binary interaction? Rotation? Dependence on metallicity? M_{WIND}

SNe and SNR are complementary

Hints from CSM interaction SNe IIn Hints from SNR jets Remnants: PSR, BH ⁴⁴Ti

Wongwathanarat et al.

Core Collapse Progenitors: Cas A

B Spitzer 24μG Herschel 70μR Herschel 100μ

B Chandra Fe K G Chandra synchrotron R Chandra Si K

B HST 775G HST 850LPR WIRC [Fe II]

Koo & Park

Room for Improvement

Non-radiative shocks:

Single component gives wrong abundances

Recombing spectra

Non-Maxwellian electron velocities?

Room for Improvement

Distances

Gaia

Radio	ALMA, SKA, LOFAR, MWA
IR	JWST, ground-based
UV	
Optical	IFUs
X-ray	XARM, LYNX, ATHENA
Gamma-ray	СТА

Type Ia Delay Times

SN1991bg-like

15% subluminous

Merger?

6 Gyr compared to 1 Gyr typically from age of stellar population

